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The regression analysis of multivariate count data for capturing the dependence
structures between multiple count response variables based on explanatory variables is
encountered across several disciplines such as biology, biometrics, genetics, medicine,
marketing, ecology, sociology, econometrics, and insurance. In general, multivariate
count data models can be classified into the following three classes: multivariate Pois-
son models, multivariate mixed Poisson (MVMP) models, and copula-based models.
For more details, the interested reader can refer to the works of M’Kendrick (1925),
Stein and Juritz (1987), Stein et al. (1987), Kocherlakota (1988), Aitchison and Ho
(1989), Jung and Winkelmann (1993), Joe (1997), Johnson et al. (1997), Krumme-
nauer (1998), Lakshminarayana et al. (1999), Lee (1999), Munkin and Trivedi (1999),
Gurmu and Elder (2000), Chib and Winkelmann (2001), Ho and Singer (2001), Kocher-
lakota and Kocherlakota (2001), Cameron et al. (2004), Karlis and Meligkotsidou (2005),
Zimmer and Trivedi (2006), Genest and Nešlehová (2007), Park and Lord (2007), Ma
et al. (2008), Winkelmann (2008), Aguero-Valverde and Jovanis (2009), El-Basyouny
and Sayed (2009), Famoye (2010), Nikoloulopoulos and Karlis (2010), Ghitany et al.
(2012), Cameron and Trivedi (2013), Nikoloulopoulos (2013), Rüschendorf (2013), Zhan
et al. (2015), Marra and Wyszynski (2016), Nikoloulopoulos (2016), Chen and Hanson
(2017), Silva et al. (2019), and Chiquet et al. (2020).
In a non-life insurance setting, the actuary may be concerned with modelling jointly

different types of claims and their associated counts. In this market segment, there are
several circumstances where the interest lies in developing models which can accommo-
date for positively correlated claims whilst accounting for overdispersion which is a direct
consequence of unobserved heterogeneity due to systematic effects in the data. Further-
more, these dependence structures between different claim types may be observed within
the same insurance policy, such as property damage and bodily injury claims in motor
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third party liability (MTPL) insurance, or in alternative types of coverage, such as home
and auto insurance, bundled together under a single policy. Regarding the latter, some
of the advantages for the policyholder are multi-product premium discounts, straight-
forward tracking of policy renewal dates, easy claims reporting, and a more ”personal”
relationship between the insured and their insurer where the latter closely identify their
needs and mitigate possible insurance coverage gaps. From the insurer’s perspective
though, bundling multiple types of insurance for the same policyholder translates into
a need to develop predictive models which can efficiently capture the joint dynamics of
different claims types associated with various insurance business lines. With regards to
the use of alternative multivariate count models in non-life insurance, see for instance,
Bermúdez and Karlis (2011), Bermúdez and Karlis (2012), Shi and Valdez (2014a), Shi
and Valdez (2014b), Abdallah et al. (2016), Bermúdez and Karlis (2017), Bermúdez
et al. (2018), Pechon et al. (2018), Pechon et al. (2019), Bolancé and Vernic (2019), De-
nuit et al. (2019), Fung et al. (2019), Bolancé et al. (2020), Pechon et al. (2021), Jeong
and Dey (2021), Gómez-Déniz and Caldeŕın-Ojeda (2021) and Tzougas and di Cerchiara
(2021).
In the current study, we develop a multivariate Poisson-Generalised Inverse Gaussian

(MVPGIG) regression model with varying dispersion and shape for modelling positively
correlated and overdispersed claim counts from different types of coverage in a flexi-
ble manner. In particular, within the adopted modelling framework, in addition to the
marginal mean parameters, which are traditionally modelled using risk factors, regres-
sors are allowed on the dispersion and shape parameters. The proposed approach allows
us to model the skewness and kurtosis of the model explicitly as a function of the ex-
planatory variables for the mean, dispersion and shape parameters. Instead, if only the
mean parameter is modelled in terms of explanatory variables then this can lead to a
misclassification of policyholders with a high number of claims due to the unobserved
heterogeneity changes with covariates.Furthermore, the MVPGIG, is a broad family of
models including many MVMP models considered in the aforementioned literature ones
as special and/or limiting cases, such as, for example, the multivariate Negative Bino-
mial (MVNB), or multivariate Poisson-Gamma, multivariate Poisson-Inverse Gaussian
(MVPIG), multivariate Poisson–Inverse Exponential, multivariate Poisson–Inverse Chi
Squared, and multivariate Poisson–Scaled Inverse Chi Squared distributions, depend-
ing on the estimated values of the dispersion and shape parameters which are modelled
based on covariate information, hence enabling us to account for the tail behaviour of
observed data in versatile manner. The latter can be regarded as an important prop-
erty for capturing overdispersion since this phenomenon is not necessarily attributed to
an excess of zeros but it may be also caused by a heavy tail in the claim count data,
see Shared (1980). For illustrative purposes, the bivariate Poisson-Generalised Inverse
Gaussian (BPGIG) regression model with varying dispersion and shape is fitted on Mo-
tor Third Party Liability (MTPL) insurance bodily injury and property damage claim
count data using a novel Expectation-Maximization (EM) type algorithm. The proposed
maximum likelihood (ML) estimation scheme takes advantage of the stochastic mixture
representation of the BPGIG model in order to reduce the problem of maximizing its
cumbersome likelihood function which is expressed in terms of the modified Bessel func-
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tion of the third kind to the simple problem of maximising the likelihood function of its
mixing density.
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