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Abstract

We study the perpetual American options optimal stopping problems

V (x, y) = sup
τ

Ex,y

[
e−rτ G(Xτ , Yτ )

]
(1)

associated with the gain (or payo�) functions

G(x, y) = K − Ly − x and G(x, y) = (K − x)+ (L− y)+ (2)

where r > 0 and K,L > 0 are some given constants. We assume that the components of the
two-dimensional process (X, Y ) = (Xt, Yt)t≥0 solve the stochastic di�erential equations

dXt = (r − δ1)Xt dt+ σ1Xt dB
1
t (X0 = x) (3)

dYt = (r − δ2)Yt dt+ σ2 Yt dB
2
t (Y0 = y) (4)

for some given constants r > 0, δj ≥ 0 and σj > 0, for j = 1, 2. Here Bj = (Bj
t )t≥0, for j = 1, 2,

are standard Brownian motions on the probability space (Ω,F ,P) started at 0 and constantly
correlated with E[B1

tB
2
t ] = ρt for all t ≥ 0 and some ρ ∈ (−1, 1) given �xed. It is assumed that

the expectation in (1) is taken with respect to the probability measure Px,y under which the
process (X, Y ) starts at some point (x, y) ∈ (0,∞)2, and the supremum in (1) is taken over all
stopping times τ with respect to the natural �ltration (Ft)t≥0 of (X, Y ).

McDonald and Siegel [5] solved the problem of pricing perpetual American exchange option
with the payo� function G(x, y) = x − Ky in the framework of the two-dimensional model
de�ned in (3)-(4). Olsen and Stensland [7] and Hu and Øksendal [3] provided su�cient and
necessary conditions for the optimal exercise of the exchange options in the multi-dimensional
version of the model presented in (3)-(4). Nishide and Rogers [6] extended the results of the
previous papers to the case of more complicated exchange options on several underlying assets.
The problems of pricing of American-type options on several assets and the related multi-
dimensional optimal stopping problems were also studied in Jaillet, Lamberton, and Lapeyre
[4], Broadie and Detemple [1], and Villeneuve [8] among others, for continuous di�usion models.
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In the present paper, we consider perpetual American options with payo�s de�ned in (2).
The resulting optimal stopping problems in (1) are necessarily two-dimensional in the sense
that they cannot be reduced to optimal stopping problems for one-dimensional continuous
Markov processes. In these cases, the optimal exercise boundaries for one risky asset price
can be expressed as functions of the current state of the other. We �nd closed formulas for
the value function expressed in terms of the optimal stopping boundaries which in turn are
shown to be unique solutions to nonlinear Fredholm integral equations. A key argument in
the existence proof is played by a pointwise maximisation of the expression obtained by the
change-of-measure arguments. This provides tight bounds on the optimal stopping boundaries
as well as describes their shape and asymptotic behaviour for small coordinate values of X
and Y . The corresponding tight bounds for some non-discounted essentially two-dimensional
optimal stopping problems have been recently derived in [2].

Keywords: Two-dimensional di�usion process, perpetual American options with additive and
multiplicative payo�s, elliptic partial di�erential free-boundary problem, nonlinear Fredholm
integral equation for the exercise boundary, the change-of-variable formula with local time on
curves/surfaces.
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