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This research explores the reliability of deep learning, specifically Long Short-
Term Memory (LSTM) networks, for estimating the Hurst parameter in
fractional stochastic processes. The study focuses on two types of processes:
the fractional Brownian motion (fBm) and the fractional Ornstein-Uhlenbeck
(fOU) process. The work involves a fast generation of extensive datasets for
fBm and fOU to train the LSTM network on a large volume of data in a
feasible time. The study analyses the accuracy of the LSTM network’s Hurst
parameter estimation regarding various performance measures like RMSE,
MAE, MRE, and quantiles of the absolute and relative errors. It finds that
LSTM outperforms the traditional statistical methods, the relative error,
however, is still significant. The research also delves into the implications of
training length and valuation sequence length on the LSTM’s performance.

A (scaled) fractional Brownian motion (fBm), denoted as BH(t), is
a Gaussian process initiating from zero and characterized by continuous
time, zero mean, and the autocovariance function E [BH(t) ·BH(s)] =
σ2
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(
|t|2H + |s|2H − |t− s|2H

)
. The fBm is notable for having stationary and

dependent increments and is recognized for being a self-similar process.
The Hurst exponent H and the scale σ are its parameters.
A mean-reverting fractional Ornstein-Uhlenbeck (fOU) process, also
known in the finance literature as the fractional Vasicek model, is defined
by a mean reverting fractional stochastic Langevin differential equation
dX(t) = κ(θ−X(t))dt+ σdBH(t), where the process is driven by a standard
fBm BH(t) with the Hurst exponent H ∈ (0, 1), and κ, σ > 0, θ ∈ R.

The network architecture used in our experiments is composed of a two-layer
unidirectional LSTM with an input dimension of 1 and an inner representa-
tion dimension of 128. The MLP, utilized in both models, has three layers
with output dimensions of 128, 64, and 1, respectively, and incorporates a
PReLU activation function between its first two layers. For model training,
we employed AdamW optimization targeting the MSE loss function. The
learning rate was established at 10−4, with the batch size for both training
and validation set at 32. The training spans 100 epochs with each epoch
generating 100,000 sequences/trajectories. The trained network is then used
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to estimate the Hurst parameter of 10000 fBm and fOU trajectories of length
400, 1600, and 6400, respectively. We evaluate the estimation in terms of
the RMSE, the MAE, and the mean relative errors (MRE). Rarely occurring
severe errors can be very much intolerable in some applications. Therefore,
beyond the mean error values, we also calculate the 95% quantiles and the
medians of the absolute and relative errors.

Type Evaluation RMSE MAE MRE% Absolute Error Relative Error %
length q95% q50% q95% q50%

LSTM 400 0.0311 0.0241 7.32 0.0630 0.0194 24.45 4.66
on fBm 1600 0.0149 0.0117 3.63 0.0300 0.0094 11.73 2.21

6400 0.0079 0.0066 2.43 0.0165 0.0056 9.80 1.24

LSTM 400 0.0295 0.0229 7.02 0.0599 0.0184 22.53 4.33
on fOU 1600 0.0157 0.0122 3.62 0.0321 0.0098 11.51 2.31

6400 0.0107 0.0085 2.28 0.0233 0.0063 6.65 1.60

Table 1: Performance metrics for LSTM evaluated on fBm and fOU. The LSTM network
was trained on 1600-long samples.

It is more difficult to estimate the drift parameter κ of the fOU process. The
full evaluation of the LSTM estimate is still ongoing work, but in Figure 1.
the superior performance of LSTM (2nd and 3rd rows) to the state-of-the-art
statistical estimator (first row) is apparent.

Figure 1: The Hurst parameter’s learning quality evaluation of a fOU-1600 trained
LSTM estimator when it is applied to 10000 unit drift fOU processes, observed in variable
resolution with mesh sizes 400, 1600, 6400, and 25600.
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