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Introduction

In this part, we will mainly focus on the spatial spread of Wolbachia bacteria into
a wild host population.

Endo-symbiotic bacteria found in most arthropod species.

Maternally transmitted from mother to offsprings.

Causes cytoplasmic incompatibility (CI) and blocks transmission of some
viruses (Dengue, Chikungunya, Zika) by Aedes mosquitoes.

Several side-effects on its host (reduces fecundity, reduces lifespan, ...).

♀\♂ Infected Sound
Infected I I
Sound × S

Then, we consider a population replacement problem : replacing the wild
population by a population carrying the bacteria Wolbachia.
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Introduction

Only adults mosquitoes can fly and their dispersal is estimated to less than 1km
during their life time. Then we consider the simplified model for adults
mosquitoes :

ni : density of Wolbachia-infected mosquitoes ;

nu : density of uninfected mosquitoes ;

du, di = δdu : death rate, δ > 1 ;

Fu, Fi = (1− s f )Fu : fecondity ;

sh : cytoplasmic incompatibility parameter (fraction of uninfected females’
eggs fertilized by infected males which will not hatch) ;

K : carrying capacity ;

D : dispersal coefficient (assumed to be constant).

Model {
∂tni − D∆ni = (1− s f )Funi

(
1− ni+nu

K
)
− δduni,

∂tnu − D∆nu = Funu(1− sh
ni

ni+nu
)
(
1− ni+nu

K
)
− dunu,
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Reaction-diffusion equations

PDE model for population dynamics

Let us denote n(t, x) the density of a species at time t, position x ∈ Rd. We
assume that the species move randomly according to Brownian motions. We
denote by B(t, x) and D(t, x) respectively the birth and death rate. The system
governing the dynamics of the population n reads

∂tn(t, x) −A(x) ∆n(t, x)︸ ︷︷ ︸
Brownian motion

= B(t, x)n(t, x)− D(t, x)n(t, x)︸ ︷︷ ︸
birth and death

.

The quantity A(x) > 0 is the diffusion coefficient.
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Reaction-diffusion equations Some mathematical properties for parabolic problems

Second order parabolic equations

Let Ω ⊂ Rd, T > 0, Q = (0, T)×Ω. We consider the second order partial
differential operator

Pu = ∂tu−
d

∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
−

d

∑
i=1

bi(t, x)
∂u
∂xi
− c(t, x)u,

where aij, bi, c are continuous on Q, bounded, aij = aji, and such that

Ellipticity

∃ ν0 > 0,
d

∑
i,j=1

aijξiξ j ≥ ν0|ξ|2, ∀ ξ ∈ Rd, (t, x) ∈ Q.

Examples :
• ∂tu− ∆u = f (Heat equation).
• ∂tu− ∆u + div(bu) = 0 (Drift-diffusion/Fokker-Planck).
• ∂tu− div(A(x)∇u)− b(x) · ∇u− c(x)u = 0 with A symmetric, positive
definite with eigenvalues bounded from below by ν0.
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Reaction-diffusion equations Some mathematical properties for parabolic problems

Second order parabolic equations

From now on, we will always denote by P a parabolic second order partial
differential operator

Pu = ∂tu−
d

∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
−

d

∑
i=1

bi(t, x)
∂u
∂xi
− c(t, x)u.

For Ω ⊂ Rd, we consider the Cauchy problem

Pu(t, x) = f (t, x), in Q,
u(0, x) = u0(x), ∀ x ∈ Ω,
u(t, x) = g(t, x), ∀ t ∈ (0, T), x ∈ ∂Ω.

We will not consider the theory of existence of solution and assume that such
problem admits a solution. We will review briefly some important properties of
such solutions.
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Reaction-diffusion equations Some mathematical properties for parabolic problems

Maximum principle for parabolic equations

Weak maximum principle (corollary)

Let Ω ⊂ Rd be bounded and u a function in C1 in t and C2 in x on
Q = (0, T)×Ω, continuous on Q, such that u is a solution to

Pu ≥ 0, on Q,

u ≥ 0, on ∂PQ = ({0} ×Ω) ∪ ([0, T]× ∂Ω).

Then u ≥ 0 on Q.

Idea of the proof (in the case Pu > 0). Let (t0, x0) such that
u(t0, x0) = minQ u.

• If (t0, x0) ∈ ∂PQ, then by assumption u(t0, x0) ≥ 0.
• If (t0, x0) /∈ ∂PQ, we have ∇u(t0, x0) = 0, D2

xxu(t0, x0) ≥ 0 and
∂tu(t0, x0) ≤ 0. Thus 0 ≤ Pu(t0, x0) ≤ −cu(t0, x0). Then, if c ≤ 0, u(t0, x0) ≥ 0
and the proof is done. If c > 0, we set u = e−‖c‖∞tv, then we have
Pu = Pv− ‖c‖∞v = P̃v. Since c− ‖c‖∞ ≤ 0, we may apply the result in the
case c ≤ 0 to the operator P̃. It implies v ≥ 0⇒ u ≥ 0.
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Reaction-diffusion equations Some mathematical properties for parabolic problems

Maximum principle for parabolic equations

Uniqueness for the Cauchy problem

When it exists, the solution to the following problem is unique

Pu = f (t, x), in Q,
u(0, x) = u0(x), ∀ x ∈ Ω,
u(t, x) = g(t, x), ∀ t ∈ (0, T), x ∈ ∂Ω.

Proof. It is an easy consequence of the weak maximum principle. Indeed, if we
have two solution u1 and u2. Using the above result for u1 − u2 we deduce
u1 − u2 ≥ 0. Doing the same with u2 − u1, we conclude that u1 = u2.
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Reaction-diffusion equations Some mathematical properties for parabolic problems

Comparison principle for parabolic equations

We consider non-linear problem

Pu = f (t, x, u), on Q = (0, T)×Ω,

with f : Q×R→ R continuous and u 7→ f (t, x, u) is locally Lipschitz, uniformly
with respect to (t, x).

Comparison principle

Let Ω bounded. Let u, v in C1 in t and C2 in x on Q, continuous on Q, and such
that

Pu ≥ f (t, x, u), Pv ≤ f (t, x, v), on Q
u(t, x) ≥ v(t, x), ∀ t ∈ (0, T), x ∈ ∂Ω,

u(0, x) ≥ v(0, x), ∀ x ∈ Ω.

Then u ≥ v on Q.
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Reaction-diffusion equations Some mathematical properties for parabolic problems

Comparison principle for parabolic equations

Idea of the proof (when f ∈ C1).
Let w = u− v. We have

Pw ≥ f (t, x, u)− f (t, x, v) = γ(t, x)w,

where

γ(t, x) =


f (t, x, u(t, x))− f (t, x, v(t, x))

u(t, x)− v(t, x)
, if u(t, x) 6= v(t, x),

∂u f (t, x, u(t, x)), if u(t, x) = v(t, x).

For f ∈ C1, γ is continuous. Thus,

(P− γ(t, x))w ≥ 0, on Q,
w ≥ 0, on ∂PQ.

By the weak maximum principle, we deduce w ≥ 0.
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Reaction-diffusion equations Some mathematical properties for parabolic problems

Sub- and super-solutions for parabolic equations

We consider the problem

Pu = f (t, x, u), on Q,
u(0, x) = u0(x), ∀ x ∈ Ω,
u(t, x) = g(t, x), ∀ t ∈ (0, T), x ∈ ∂Ω.

From the comparison principle, if u verifies

Pu ≤ f (t, x, u), on Q,
u(0, x) ≤ u0(x), ∀ x ∈ Ω,
u(t, x) ≤ g(t, x), ∀ t ∈ (0, T), x ∈ ∂Ω.

Then u ≤ u on Q. It is called a generalized sub-solution.
By the same token, if u verifies

Pu ≥ f (t, x, u), on Q,
u(0, x) ≥ u0(x), ∀ x ∈ Ω,
u(t, x) ≥ g(t, x), ∀ t ∈ (0, T), x ∈ ∂Ω.

Then u ≤ u on Q. It is called a generalized super-solution.
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Reaction-diffusion equations Notion of traveling waves

Introduction (B. Perthame, Parabolic equations in biology, Springer, 2015.)

An interesting phenomenon modelled by reaction-diffusion equation in full space is
propagation, mathematically described thanks to traveling waves. In biology,
traveling waves have been used in many situations to explain invasiveness of a
species, spread of a genetic trait, propagation of epidemy, ...

Figure – Two examples of invasion phenomena : Left : bubonic plague in Europe
during the middle age ; Right : cane toads in Australia nowadays.
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Reaction-diffusion equations Notion of traveling waves

Introduction

Figure – Spread of Wolbachia in a part of the city of Cairns, Australia, where releases
of Wolbachia infected mosquitoes have been performed in 2013 2. A : first dry season,
B : first wet season, C : second dry season, D : second wet season.

1. Picture from Schmidt TL, Barton NH, Rasic G, Turley AP, Montgomery BL,
Iturbe-Ormaetxe I, et al. (2017) PLoSBiol 15(5) :e2001894.

2. Picture from Schmidt TL, Barton NH, Rasic G, Turley AP, Montgomery BL,
Iturbe-Ormaetxe I, et al. (2017) PLoSBiol 15(5) :e2001894.
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Reaction-diffusion equations Notion of traveling waves

Setting of the problem

To simplify, we work in one space dimension and consider one species whose
dynamics is governed by the reaction-diffusion equation :

∂tu− ∂xxu = f (u), t > 0, x ∈ R.

Definition

A traveling wave solution is a solution of the form u(t, x) = v(x− ct) with c ∈ R

a constant called traveling speed.

We usually consider the case where the function f admits two stationary states
f (0) = f (1) = 0 :

Fisher/KPP (monostable) equation : f (u) = u(1− u).
Allen-Cahn (bistable) equation : f (u) = u(1− u)(u− θ).

We complete the definition by the conditions v(−∞) = 1, and v(+∞) = 0.
When c > 0, this expresses the fact that the state v = 1 invades the state v = 0.
When c < 0, the state v = 0 invades the state v = 1.
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Reaction-diffusion equations Notion of traveling waves

Setting of the problem

Injecting the expression u(t, x) = v(x− ct) into the equation, we arrive at the
system :

Problem

We look for a real-valued function v and a real c such that

v′′ + cv′ + f (v) = 0, on R,
v(−∞) = 1, v(+∞) = 0.

x

v

c

When c = 0, we say that we have a stationary state or a standing wave.
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Reaction-diffusion equations Notion of traveling waves

Setting of the problem

Observations :

The problem is invariant by translation :
If v(x) is a solution, then v(x + a) is a solution for any a ∈ R. Then, we
normalize by setting for instance v(0) = 1

2 .

Multiplying by v′, we get

1
2
((v′)2)′ + c(v′)2 + (F(v))′ = 0, where F(v) =

∫ v

0
f (s) ds.

Integrating (using the fact that v′(±∞) = 0), we find

c
∫

R
(v′(x))2 dx = F(1) =

∫ 1

0
f (s) ds.

An important consequence is that

c has the same sign as
∫ 1

0 f (s) ds.

For instance, in the Fisher/KPP case, f (u) = u(1− u) ≥ 0 for u ∈ [0, 1], thus
F(1) > 0, it means that v = 1 is invading.
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Reaction-diffusion equations Main results
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Reaction-diffusion equations Main results

The Fisher/KPP (monostable) case

Let us consider the case where f (u) = u(1− u). A famous result is

Theorem

For any c ≥ c∗ = 2, there is a unique traveling wave solution v with 0 ≤ v ≤ 1
and v monotically decreasing.

The quantity c∗ is called the minimal propagation speed.

This result can be extended to general equation

∂tu− D∂xxu = f (u), with f (0) = f (1) = 0, f (u) > 0 for 0 < u < 1.

In this case, the minimal propagation speed is c∗ = 2
√

f ′(0)D.
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Reaction-diffusion equations Main results

Allen-Cahn (bistable) equation

We consider the bistable case, i.e. 0 and 1 are both stable steady state.

Traveling wave solution

We look for c ∈ R and a real-valued function v such that

v′′ + cv′ + f (v) = 0

v(−∞) = 1, v(+∞) = 0, v(0) =
1
2

.

We will make use of the notation F(u) =
∫ u

0
f (v) dv. We assume that

f (0) = 0, f ′(0) < 0, f (θ) = 0, f (1) = 0, f ′(1) < 0,
f (u) < 0 on (0, θ), f (u) > 0 on (θ, 1).

Adapting the phase space method, we may prove :

Theorem

Under these assumptions, there exists a unique traveling wave solution (c∗, v)
with v decreasing.
We have c∗ > 0 for F(1) > 0, c∗ = 0 for F(1) = 0, c∗ < 0 for F(1) < 0.
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Reaction-diffusion equations Main results

Proof

Proof. Such results are known since decades 3. There are several techniques of
proof. We provide here a simple proof based on a phase space method for ODE.
The proof is divided into three steps :

1 reduction to a simple ODE ;

2 monotonicity in c ;

3 existence by a continuity argument.

1st step : Reduction to a simple ODE

We set w = −v′ (so that w > 0 since we look for v decreasing). The equation
becomes

v′ = −w w′ = −cw + f (v)
v(−∞) = 1, w(−∞) = 0, v(+∞) = 0, w(+∞) = 0.

3. H. Berestycki, B. Nikolaenko, and B. Scheurer, Travelling waves solutions to combustion
models and their singular limits, SIAM J. Math. Anal., 16 (1985)
A. Volpert, V. Volpert, V. Volpert. Traveling wave solutions of parabolic systems. Translation of
Mathematical Monographs, Vol. 140, Amer. Math. Society, Providence, 1994
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Reaction-diffusion equations Main results

Proof

By monotonicity of v, we can invert v(x) as a function X(v), 0 ≤ v ≤ 1. We set
w̃(v) = w(X(v)). The system becomes

dw̃
dv

=
dw
dx

( dv
dx

)−1
= c− f (v)

w̃(v)
, 0 ≤ v ≤ 1,

w̃(0) = w̃(1) = 0, w̃ ≥ 0.

Therefore, the problem reads :

Problem

Can we find a special value for c for which the following boundary value problem
admits a solution :

dw̃
dv

= c− f (v)
w̃(v)

, 0 ≤ v ≤ 1,

w̃(0) = w̃(1) = 0, w̃ ≥ 0.

We consider the case F(1) > 0 only (otherwise the argument is the same except
that we have to argue departing from v = 1).
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Reaction-diffusion equations Main results

Proof

We first notice that there is a priori a singularity at v = 0. This singularity can be
handled by computing (L’Hospital rule)

w̃′(0) = c− f ′(0)
w̃′(0)

⇐⇒ w̃′(0) =
1
2

(
c +

√
c2 + 4| f ′(0)|

)
.

A shooting argument

Finally, we arrive at the question to know if the solution to the Cauchy problem

dw̃
dv

= c− f (v)
w̃(v)

, 0 ≤ v ≤ 1, (1)

w̃(0) = 0,

can also achieve for a special value of c the conditions w̃c(1) = 0, w̃c ≥ 0.

For c given, we denote by w̃c the solution to (1). Notice that since f ≥ 0 on
(0, θ), we have

w̃c(v) ≥ cv on (0, θ).
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Reaction-diffusion equations Main results

Proof

Then the solution can be continued smoothly as a simple ODE until w̃c vanishes
and the problem is not defined any longer. There are two possibilities :

either w̃c(v) > 0 for 0 ≤ v ≤ 1, we call this solution Type 1 and we set
vc = 1.
or there exists vc ∈ (θ, 1) such that w̃c(vc) = 0, then the system reaches a
singularity where w̃′c(vc) = −∞, we call this solution Type 2.

We are interested in the limiting case.

2nd step : Monotonicity in c.

Lemma

The mapping c 7→ w̃c(v) is increasing for those v where it is defined, i.e. for
0 < v < vc.

Proof. We set zc(v) =
dw̃c(v)

dc . From (1), it satisfies

dzc(v)
dv

= 1 +
f (v)

(w̃c(v))2 zc(v), zc(0) = 0.

We deduce that zc cannot vanish for v > 0 and thus zc(v) ≥ v as long as it is
defined, i.e. for v < vc.
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Reaction-diffusion equations Main results
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Reaction-diffusion equations Main results

Proof

Consequently w̃c(1) is an increasing function of c. Therefore there can be at most
one value of c satisfying the condition w̃c(1) = 0.

3rd step : Existence.

Let us define

c2 = 4 max
0≤v≤1

f (v)
v

.

Clearly c < c. Moreover, we have

Lemma

For c > c, the solution is of Type 1. For c ∼ 0, the solution is of Type 2.

Once this lemma is proved, the existence of a c such that w̃c(1) = 0 will follow by
a continuity argument. The uniqueness is a consequence of the monotonicity.
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Reaction-diffusion equations Main results

The monostable equation with ignition temperature

Proof of the Lemma.
• For c > c the solution is Type 1 :
We consider the largest interval [0, v0] ⊂ [0, 1] on which w̃c(v) ≥ c

2 v. Since
w̃c(v) ≥ cv on [0, θ], clearly v0 > θ. If v0 < 1, then w̃′c(v0) ≤ c

2 and we would
have

c
2
≥ dw̃c(v0)

dv
= c− 2

f (v0)

cv0
≥ c− c2

2c
.

This is a contradiction with the fact that c > c.
• For c ∼ 0 the solution is Type 2 :
Multiplying (1) by w̃c and integrating, we obtain the relation

1
2

w̃c(v)2 = c
∫ v

0
w̃c(z) dz− F(v),

where we recall that F′ = f and F(1) > 0. Since F(1) > 0, there exists β < 1
such that F(β) = 0, F < 0 on (0, β), and F > 0 on (β, 1). Thus, for c = 0, we
have w̃0(v)2 = −2F(v). It allows to define a solution up to β. Therefore the
solution ceases to exist for v larger than β, i.e. the solution is Type 2.
By continuity, the solution is Type 2 for c ∼ 0.
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Reaction-diffusion equations Main results

End of proof

Finally, we conclude by continuity argument, using the monotonicity :

As c increases from 0, vc increases from the monotonicity.
Indeed, from the latter equality taken at v = vc, we have

0 = c
∫ vc

0
w̃c(z) dz− F(vc), w̃c(vc) = 0.

Differentiating in c, we obtain

0 =
∫ vc

0
w̃c(z) dz + cw̃c(vc)

dvc

dc
− f (vc)

dvc

dc
+ c

∫ vc

0

dw̃c(z)
dc

dz.

Hence we get

dvc

dc
=

1
f (vc)

(∫ vc

0
w̃c(z) dz + c

∫ vc

0

dw̃c(z)
dc

dz
)
> 0.

We define c∗ as the maximum of the c corresponding to Type 2. It satisfies
w̃c∗(vc∗) = 0. By monotonicity, it is also the minimum of c giving solutions
of Type 1.
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Reaction-diffusion equations Main results

A remark

Remark : an explicit solution.
For the simple choice of bistable function satisfying the assumptions given by

f (u) = u(1− u)(u− θ),

we have an explicit expression of the traveling wave solution :

v(x) =
e−x/

√
2

1 + e−x/
√

2
, c∗ =

√
2(

1
2
− θ).

Indeed, we may compute with this expression,

v′ =
1√
2

v(v− 1), v′′ =
v′√

2
(2v + 1) = v(v− 1)(v +

1
2
).

Thus, −c∗v′ − v′′ = v(1− v)(v + c∗√
2
+ 1

2 ) = f (v).
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Spatial propagation of Wolbachia Mathematical properties for the reaction-diffusion system

Let us come back to the release of Wolbachia-infected mosquitoes. To illustrate
we provide some pictures of people releasing Wolbachia-infected male mosquitoes
(pictures taken in 2017 in Tetiaroa, French Polynesia, courtesy of Hervé Bossin).
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Spatial propagation of Wolbachia Mathematical properties for the reaction-diffusion system

Mathematical model

We recall the mathematical model for the dynamics of Wolbachia infected
mosquitoes and Wolbachia free mosquitoes :

ni : density of Wolbachia-infected mosquitoes ;

nu : density of uninfected mosquitoes ;

du, di = δdu : death rate, δ > 1 ;

Fu, Fi = (1− s f )Fu : fecondity ;

sh : cytoplasmic incompatibility parameter (fraction of uninfected females’
eggs fertilized by infected males which will not hatch) ;

K : carrying capacity ;

Model {
∂tni − ∆ni = (1− s f )Funi

(
1− ni+nu

K
)
− δduni,

∂tnu − ∆nu = Funu(1− sh
ni

ni+nu
)
(
1− ni+nu

K
)
− dunu,

To simplify, we choose the diffusion coefficient D = 1.
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Spatial propagation of Wolbachia Mathematical properties for the reaction-diffusion system

Mathematical model

Model

{
∂tni − ∆ni = f1(ni, nu) := (1− s f )Funi

(
1− ni+nu

K
)
− δduni,

∂tnu − ∆nu = f2(ni, nu) := Funu(1− sh
ni

ni+nu
)
(
1− ni+nu

K
)
− dunu,

Nonnegativity : if at t = 0 the densities are nonnegative, then they are
nonnegative for any positive time.

Bound : solutions are clearly bounded uniformly by K.

This model is competitive : ∂2 f1 < 0 and ∂1 f2 < 0 on the quadrant
(ni, nu) > 0. Then an increase of ni (resp. nu) will affect negatively the
population nu (resp. ni).

Comparison principle : if 0 ≤ n0
i ≤ ñi

0, 0 ≤ ñu
0 ≤ n0

u, then for any t > 0, we
have 0 ≤ ni(t) ≤ ñi(t), 0 ≤ ñu(t) ≤ nu(t).
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Spatial propagation of Wolbachia Mathematical properties for the reaction-diffusion system

Mathematical model : equilibria

We first consider the steady states (equilibria) for the associated ODE model, with
no diffusion.

Steady states

As soon as s f + δ− 1 < δsh, there are four distinct nonnegative equilibria :

Wolbachia invasion (n∗iW , n∗uW) := (K− du
Fu

δ
1−s f

, 0) is stable ;

Wolbachia extinction (n∗iE, n∗uE) := (0, K− du
Fu
) is stable ;

co-existence steady state

(n∗iC, n∗uC) :=
((

K− du
Fu

δ
1−s f

) δ−(1−s f )

δsh
,
(
K− du

Fu
δ

1−s f

) δ(sh−1)+(1−s f )

δsh

)
is

unstable ;

extinction (0, 0) is unstable.
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Spatial propagation of Wolbachia Mathematical properties for the reaction-diffusion system

Mathematical model : equilibria
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Figure – Phase portrait representing the equilibria and their stability for the dynamical
system without spatial diffusion
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Spatial propagation of Wolbachia Reduction of the system for Wolbachia

Large fertility asymptotics

Since we know several results for scalar reaction-diffusion equation, we will try to
reduce this system into a scalar equation. To this aim, we consider that the

fecundity is large and introduce the parameter ε such that Fu = F0
u
ε ,∂tni − ∆ni = (1− s f )

F0
u
ε ni
(
1− ni+nu

K
)
− δduni,

∂tnu − ∆nu = F0
u
ε nu(1− sh

ni
ni+nu

)
(
1− ni+nu

K
)
− dunu.

We are interested in the limit ε→ 0.

We first observe that
ni + nu = K + O(ε).
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u
ε ,∂tni − ∆ni = (1− s f )
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u
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Spatial propagation of Wolbachia Reduction of the system for Wolbachia

Large fertility asymptotics

In order to perform the asymptotics study, we introduce

n =
1
ε
(1− ni + nu

K
), p =

ni
ni + nu

(fraction of infected).

After straightforward computations, we find{
∂tn− ∆n = − 1−εn

ε (F0
u n(sh p2 − (s f + sh)p + 1)− du((δ− 1)p + 1)),

∂t p− ∆p + 2ε
1−εn∇p · ∇n = p(1− p)(Fun(sh p− s f ) + (1− δ)du).

Formally, when ε→ 0, we deduce from the first equation that

n→ n0 =
du((δ− 1)p0 + 1)

Fu(sh p02 − (s f + sh)p0 + 1)
.
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Spatial propagation of Wolbachia Reduction of the system for Wolbachia

Reduction of the model

Injecting this expression into the second equation, we obtain after letting ε→ 0,

∂t p0 − ∆p0 = δdush
p0(1− p0)(p0 − θ)

Fu(sh p02 − (s f + sh)p0 + 1)
, θ =

s f + δ− 1
δsh

.

Notice that for δ ≥ 1 and s f < sh, we have θ ∈ (0, 1) and the denominator never

vanishes on (0, 1).
This is the celebrated model proposed by Barton & Turelli. 4

4. Spatial Waves of Advance with Bistable Dynamics : Cytoplasmic and Genetic Analogues of
Allee Effects, The American Naturalist, 2011
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Spatial propagation of Wolbachia Reduction of the system for Wolbachia

Reduction of the model

Theorem

Assuming ’well-prepared’ initial data, then when ε→ 0, we have
p := ni

ni+nu
→ p0 strongly in L2

loc(R
+; L2(Rd)), weakly in L2

loc(R
+; H1(Rd))

where p0 is the unique solution to

∂t p0 − ∆p0 = f (p0),

f (p0) =
δdush

Fu

p0(1− p0)(p0 − θ)

sh p2
0 − (s f + sh)p0 + 1

, θ =
s f + δ− 1

δsh
∈ (0, 1).

Steps for the proof 5 :

Uniform estimates of n and p and their gradient in L2 ;

Relative strong compactness thanks to a ’Aubin-Lions’ Lemma ;

Passing to the limit.

5. M. Strugarek, N. V., Reduction to a single closed equation for 2 by 2 reaction-diffusion
systems of Lotka-Volterra type, SIAM J. Appl. Math. (2016)
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Spatial propagation of Wolbachia Spatial spread of Wolbachia

Traveling waves for the Wolbachia propagation

A consequence of this latter Theorem is that the solution of the system for
Wolbachia may be approximated by the scalar reaction-diffusion equation for the
proportion of infected

∂t p− ∆p = f (p), with f (p) =
δdush

Fu

p(1− p)(p− θ)

sh p2 − (s f + sh)p + 1
.

We observe that f is bistable, i.e. f (0) = 0, f (θ) = 0 and f (1) = 0, f < 0 on
(0, θ), and f > 0 on (θ, 1).

Thus, we may apply the previous Theorem of existence of traveling waves in one
dimension.

Proposition

There exists a decreasing traveling wave for the reduced model for Wolbachia,

∂t p− ∂xx p = f (p), f bistable as above.

Moreover the speed c∗ of the wave has the sign of
∫ 1

0 f (ξ) dξ.
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Spatial propagation of Wolbachia Spatial spread of Wolbachia

Traveling waves for the Wolbachia propagation

Consequences

We recall that p is the proportion of Wolbachia-infected mosquitoes. Thus,

the stable steady state p = 0 corresponds to the Wolbachia-free equilibrium ;

the stable steady state p = 1 corresponds to the Wolbachia-infected
equilibrium ;

the unstable steady state p = θ corresponds to the coexistence equilibrium.

Thus, c > 0 implies the invasion of Wolbachia into the host population, which can

occurs if and only if
∫ 1

0 f (ξ)dξ > 0.

Fortunately, with the numerical data taken from literature, we have∫ 1
0 f (ξ)dξ > 0 for the above model for Wolbachia.

N. Vauchelet MBMC Samos 2019



Spatial propagation of Wolbachia Spatial spread of Wolbachia

Traveling waves for the Wolbachia propagation

Possible shape for f :
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Initialisation of the propagation Propagule

Critical propagule

Question :

How to spatially introduce Wolbachia-infected mosquitoes to guarantee invasion ?
How to initiate a wave ?

Answer

There exists a family of functions (vα)α, compactly supported, radially symmetric
and decreasing, such that if there exists a time τ > 0, for which we have
p(τ) ≥ vα, then p(t)→ 1 uniformly on every compact as t→ +∞. We call them
α-bubbles.

References :

A. Zlatos. Sharp transition between extinction and propagation of reaction. J.
Amer. Math. Soc., 2006.

P. Polacik. Threshold solutions and sharp transitions for nonautonomous parabolic
equations on RN . Archive for Rational Mechanics and Analysis, 2011.

Y. Du, H. Matano, Convergence and sharp thresholds for propagation in nonlinear
diffusion problems. J. Eur. Math. Soc., 2010.

C. Muratov, X. Zhong, Threshold phenomena for symmetric-decreasing radial
solutions of reaction-diffusion equations, Discr. Cont. Dyn. Syst. A, 2017.

N. Vauchelet MBMC Samos 2019



Initialisation of the propagation Propagule

Critical propagule

Question :

How to spatially introduce Wolbachia-infected mosquitoes to guarantee invasion ?
How to initiate a wave ?

Answer

There exists a family of functions (vα)α, compactly supported, radially symmetric
and decreasing, such that if there exists a time τ > 0, for which we have
p(τ) ≥ vα, then p(t)→ 1 uniformly on every compact as t→ +∞. We call them
α-bubbles.

References :

A. Zlatos. Sharp transition between extinction and propagation of reaction. J.
Amer. Math. Soc., 2006.

P. Polacik. Threshold solutions and sharp transitions for nonautonomous parabolic
equations on RN . Archive for Rational Mechanics and Analysis, 2011.

Y. Du, H. Matano, Convergence and sharp thresholds for propagation in nonlinear
diffusion problems. J. Eur. Math. Soc., 2010.

C. Muratov, X. Zhong, Threshold phenomena for symmetric-decreasing radial
solutions of reaction-diffusion equations, Discr. Cont. Dyn. Syst. A, 2017.

N. Vauchelet MBMC Samos 2019



Initialisation of the propagation Propagule

Critical bubble in one dimension

Idea : Construct a family of subsolutions for ∂tu− ∂xxu = f (u).
To do so, we notice that 0 is a solution, and we consider uα a stationary solution.
Thus vα := max{0, uα} is a subsolution. As a consequence, if u(t = 0) ≥ vα then
∀ t ≥ 0, u(t) ≥ vα.

Construction of compactly supported bubbles : The idea is to use the
symmetry and to solve the Cauchy problem on [0,+∞),

u′′α + f (uα) = 0, uα(0) = α, u′α(0) = 0.

We recall that F(1) :=
∫ 1

0 f (ξ) dξ > 0 , thus ∃ β > θ such that F(β) = 0.

Multiplying by u′α and integrating we obtain

1
2
(u′α)

2 + F(uα) = F(α).

Since we are looking for uα decreasing, we have

u′α = −
√

2(F(α)− F(uα)), uα(0) = α.

For α > β, this function is well-defined and decreasing.
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Initialisation of the propagation Propagule

Critical bubble in one dimension

We may invert it into a function Xα. Then

X′α(u) =
−1√

2(F(α)− F(u))
, Xα(α) = 0.

Integrating, we deduce

Xα(u) =
∫ α

u

dξ√
2(F(α)− F(ξ))

.

Hence, the position where the function uα vanishes is given by

Lα =
∫ α

0

dξ√
2(F(α)− F(ξ))

, F(ξ) =
∫ ξ

0
f (z)dz.

The α-bubble is defined by

vα(x) =

 uα(−x), on (−Lα, 0),
uα(x), on (0, Lα),
0 else.
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Initialisation of the propagation Propagule

Critical bubble in one dimension

Lemma

Let u solve the bistable reaction-diffusion equation ∂tu− ∂xxu = f (u). If there
exists α > β and ξ ∈ R such that u(t = 0, x) ≥ vα(x− ξ). Then u→ 1 locally
uniformly as t→ +∞.

Sketch of the proof :

Let us introduce uα the solution to the bistable reaction diffusion equation
with initial data vα. Then we have ∂tuα ≥ 0 (Indeed
∂tuα(t = 0) = ∂xxvα + f (vα) ≥ 0, since vα is a subsolution, and by
comparison principle it is true for any t > 0).

By comparison principle, we have u(t, x) ≥ uα(t, x− ξ) for any t > 0 and
x ∈ R. Thus, it suffices to show that uα −→

t→+∞
1 loc. unif.

Define θ∗ = limt→+∞ uα(t, 0). It is well-defined since uα is nondecreasing
with respect to time (and bounded by 1).
Moreover, by comparison principle 1 ≥ θ∗ ≥ α = vα(0) > β.
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Initialisation of the propagation Propagule

Critical bubble in one dimension

Let t 7→ s(t) be a smooth increasing function on R+ such that
s(t) ≤ uα(t, 0), and s(t) −→

t→+∞
θ∗. We introduce the solution to

∂tS− ∂xxS = f (S), on R+, S(t, 0) = s(t), S(0, x) = 0.
Since s is increasing, we have that t 7→ S(t) is increasing. In particular S ≥ 0.
Moreover, for any x ≥ 0 and t > 0, uα(t, x) ≥ S(t, x).

From standard parabolic regularity results, S(t) −→
t→+∞

S̃ loc. unif., where

0 = ∂xxS̃ + f (S̃), on R+, S̃(0) = θ∗.

If θ∗ < 1, then ∂xxS̃(0) > 0 and the derivative never vanishes since

(S̃′(x))2 = (S̃′(0))2 +
∫ θ∗

S̃(x)
f (ζ) dζ > 0.

Thus, S̃ is a decreasing function. Then, let 0 < x0, for all x > x0,

(S̃′(x))2 ≥ (S̃′(0))2 +
∫ θ∗

max{β,S̃(x0))} f (ζ) dζ > 0. Then, for x > x0, |S̃′(x)|
is bounded from below by a uniform positive constant : It should take
negative values. Contradiction since S ≥ 0.
Thus θ∗ = 1, then S̃ = 1. Therefore u −→

t→+∞
1 loc. unif.
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Initialisation of the propagation Propagule

Critical bubble in one dimension

Example of a family of initial data (uα) above which invasion occurs for the
function f corresponding to the one for Wolbachia (one dimensional case, to
symmetrize with respect to zero) :
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Initialisation of the propagation Propagule

General result in any dimension

Actually, a more general result is available. More precisely, there exists a critical
threshold between ignition and propagation. Let us first define the energy :

E[u] :=
∫

Rd

(1
2
|∇u|2 − F(u)

)
dx.

Then, we have 6 :

Theorem

For f a bistable function with
∫ 1

0 f (z) dz > 0. Let u be a solution to the scalar
reaction-diffusion equation. Let (φλ)λ∈[0,λ+ ] be a sequence of nonnegative initial
data such that λ 7→ φλ is nondecreasing and continuous, φ0 = 0, and
E[φλ+ ] < 0. Then, there exists λ∗ ∈ (0, λ+) such that

1 lim
t→+∞

u = 1 locally uniformly in Rd and lim
t→+∞

E[u] = −∞, for all λ > λ∗.

2 lim
t→+∞

u = 0 uniformly in Rd and lim
t→+∞

E[u] = 0, for all λ < λ∗.

3 lim
t→+∞

u = v∗ uniformly in Rd and lim
t→+∞

E[u] = E[v∗] > 0 where v∗ is the

ground state, for λ = λ∗.

6. Y. Du, H. Matano, J. Eur. Math. Soc., 2010 ; C. Muratov, X. Zhong, Discr. Cont. Dyn.
Syst. A, 2017.
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Initialisation of the propagation Application to Wolbachia introduction

Numerical results in one dimension

A direct consequence is that the initial repartition of the release of
Wolbachia-infected mosquitoes should be done in a wide enough domain with a
sufficient amount of mosquitoes.

Numerical example : With the same amount of mosquitoes, we consider two
different initial repartitions :

Extinction

inital release

time dynamics
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time dynamics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-25 -20 -15 -10 -5 0 5 10 15 20 25

fraction of infected population

Spatial distribution is important.
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Initialisation of the propagation Application to Wolbachia introduction

Numerical results in one dimension

Other examples to emphasize the importance of the spatial distribution :

Extinction

inital release

time dynamics
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Multiple releases : movie
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Initialisation of the propagation Application to Wolbachia introduction

Numerical results in two dimension

We can have similar results in higher dimension.
With the same total amount of mosquitoes on the same area :

Extinction Invasion
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Initialisation of the propagation Application to Wolbachia introduction

Uncertainty quantification of the releases

Using the same idea, with radial symmetry, we may prove that such result holds
also in higher dimension 7.

Consequence

Let Ω be a bounded domain containing the support of one bubble.
Let us assume that we perform some random point releases in Ω. Then, the
probability of success of invasion tends to 1 as the number of releases goes to +∞.

Indeed each release covers a small ball around its position of release. Then it
suffices to show that the probability to cover a domain containing a critical bubble
goes to 1 as the number of releases increases.

7. M. Strugarek, N. V., J. Zubelli, Quantifying the survival uncertainty of Wolbachia-infected
mosquitoes in a spatial model, Math. Biosci. Eng.
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Initialisation of the propagation Application to Wolbachia introduction

Uncertainty quantification of the release
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Initialisation of the propagation Application to Wolbachia introduction

Active control

Let us consider the problem of active control with a function u (which may
depend on p : feedback control)

∂t p− ∆p = f (p) + u1[0,T]×Ω, p(t = 0) = 0.

Due to the existence of bubble, it is easy to prove 8 :

Theorem

There exist a time T > 0, a bounded open set Ω ⊂ Rd and an active control
u = g(p) such that the solution p to the above equation converges to 1 as t goes
to +∞, locally uniformly on Rd.

8. P.A. Bliman, N. V., Establishing traveling wave in bistable reaction-diffusion system by
feedback, IEEE Control Systems Letter, 2017.
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Initialisation of the propagation Application to Wolbachia introduction

Active control

Idea of the proof :
We look for g(p) = µ(1− p)− f (p).
Comparison of the bubble with solution to the linear equation

∂tu− ∆u = µ(1− u) on Ω, u = 0 on ∂Ω.

Solution to this linear equation may be computed explicitely thanks to
eigenmodes. It suffices to show that u(T) ≥ vα on Ω.

Figure – Left : Dynamics of the proportion of infected (in x-axis) as a function of time
(y-axis). The domain Ω = [−1, 1], u = 1

2 (1− p), T = 10. Right : Zoom of the time
dynamics of the control input.
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Blocking waves Modelling
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Blocking waves Modelling

Heterogeneous environment

The environment is heterogeneous. Can strong variations in the total density of
mosquitoes stop the propagation ?

x
−L L

N

N. Vauchelet MBMC Samos 2019



Blocking waves Modelling

Modelling

In order to model this phenomenon, we come back to the initial model for
Wolbachia-infected mosquitoes ni and uninfected mosquitoes nu with
space-varying carrying capacity :

∂tni − ∆ni = (1− s f )Funi
(
1− ni + nu

K(x)
)
− δduni,

∂tnu − ∆nu = Funu(1− sh
ni

ni + nu
)
(
1− ni + nu

K(x)
)
− dunu.
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Modelling

In order to model this phenomenon, we come back to the initial model for
Wolbachia-infected mosquitoes ni and uninfected mosquitoes nu with
space-varying carrying capacity :

∂tni − ∆ni = (1− s f )
F0

u
ε

ni
(
1− ni + nu

K(x)
)
− δduni,

∂tnu − ∆nu =
F0

u
ε

nu(1− sh
ni

ni + nu
)
(
1− ni + nu

K(x)
)
− dunu.

As above, we consider the asymptotics of large fertility Fu = F0
u
ε with ε� 1.
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Modelling

In order to model this phenomenon, we come back to the initial model for
Wolbachia-infected mosquitoes ni and uninfected mosquitoes nu with
space-varying carrying capacity :

∂tni − ∆ni = (1− s f )
F0

u
ε

ni
(
1− ni + nu

K(x)
)
− δduni,

∂tnu − ∆nu =
F0

u
ε

nu(1− sh
ni

ni + nu
)
(
1− ni + nu

K(x)
)
− dunu.

As above, we consider the asymptotics of large fertility Fu = F0
u
ε with ε� 1.

We recall the notations

N = ni + nu (total density of mosquitoes), p =
ni

ni + nu
(fraction of infected).
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Modelling

After straightforward computations, (N, p) solves the system

∂tN − ∆N = N
(

F0
u
ε

(
1− N

K
)(
(1− s f )p + (1− p)(1− sh p)

)
− du(δp + 1− p)

)
,

∂t p− ∆p− 2
∇p · ∇N

N
= p(1− p)

(
F0

u
ε

(
1− N

K
)
(sh p− s f ) + du(1− δ)

)
.

Formally, we introduce a development of N = Nε(t, x) by setting

N = Nε(t, x) = K(x)
(

1− εnε(t, x) + ε2wε(t, x)
)

.

Equating the leading terms in the equation for N yields

nε(t, x) =
du
(
(δ− 1)p(t, x) + 1

)
− ∆K(x)/K(x)

(1− s f )p(t, x) + (1− p(t, x))(1− sh p(t, x))
.
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.
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N = Nε(t, x) = K(x)
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)

.

Equating the leading terms in the equation for N yields

nε(t, x) =
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(
(δ− 1)p(t, x) + 1

)
− ∆K(x)/K(x)

(1− s f )p(t, x) + (1− p(t, x))(1− sh p(t, x))
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Modelling

Injecting this latter expression into equation for p leads to

∂t p− ∆p− 2
∇K
K
· ∇p− 2∇p · ∇ ln

(
1− εnε + ε2wε

)
= p(1− p)

(
(sh p− s f )

du
(
(δ− 1)p + 1

)
− ∆K/K

(1− s f )p + (1− p)(1− sh p)
− du(δ− 1)

)
.

Passing formally to the limit ε→ 0, we obtain

∂t p− ∆p− 2
∇K
K
· ∇p

= p(1− p)
(
(sh p− s f )

du
(
(δ− 1)p + 1

)
− ∆K/K

(1− s f )p + (1− p)(1− sh p)
− du(δ− 1)

)
.

We assume to be in a range of parameters such that the term ∆K/K is
negligeable with respect to du. Then, the equation reduces to study

∂t p− D∆p− 2
∇K
K
· ∇p = f (p).
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Blocking waves

In one dimension, we are left to study the existence of blocking waves for the
following scalar equation for the proportion of infected mosquitoes 9

∂t p− ∂xx p− 2∂x(log N)∂x p = f (p),

where we recall that f is bistable ( i.e. f (0) = f (θ) = f (1) = 0, f < 0 on (0, θ),

f > 0 on (θ, 1)), and
∫ 1

0 f (x)dx > 0.

For the sake of simplicity, we assume that we have exponential variation of the
density in a domain [−L, L],

∂x log(N) =

{ C
2 , on [−L, L];
0, on R \ [−L, L].

9. The term ∂x(log N) is usually called the gene flow.
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Blocking waves

Existence of a stationary wave boils down to existence for

− p′′ − Cp′ = f (p), on [−L, L],

− p′′ = f (p), on R \ [−L, L],
p(−∞) = 1, p(+∞) = 0, p > 0.

For C and L given, we call (C, L)-barrier a solution to this system.

Blocking waves

Assume that there exists a (C, L)-barrier, denoted pB. Then any solution to

∂t p− ∂xx p− 2∂x(log N)∂x p = f (p),

with initial data such that pini ≤ pB, has stopped propagation, i.e.
∀ t ≥ 0, p(t) ≤ pB.
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Blocking waves

We recall that, for bistable equation, there exists a unique traveling wave solution
( p̃, c∗) solution to

− p̃′′ − c∗ p̃′ = f ( p̃), on R,
p̃(−∞) = 1, p̃(+∞) = 0.

Moreover, since we have assumed
∫ 1

0 f (x)dx > 0, we have c∗ > 0.
This is the particular case L = ∞ in our blocking wave problem.
It seems then natural to have C ≥ c∗.
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Blocking waves

More precisely, we have the following result 10

Theorem

Let C > 0 and L > 0. For C > c∗, there exists L∗(C) > 0 such that there exists a
(C, L)-barrier if and only if L ≥ L∗(C).
Moreover, C 7→ L∗(C) is decreasing and

lim
C→c∗

L∗(C) = +∞,

L∗(C) ∼
1

4C
log
(

1− F(1)
F(θ)

)
, when C → +∞,

where F(x) =
∫ x

0 f (z)dz (thus F(1) > 0 and F(θ) < 0).

10. G. Nadin, M. Strugarek, N. V., Hindrances to bistable front propagation : application to
Wolbachia invasion, J. Math. Biol. 76 (2018), no 6, 1489-1533.
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Blocking waves

Proposition

Let C > 0 and L > 0. We have the following characterisation of (C, L)−barrier :

1 Any (C, L)−barrier is decreasing.

2 Il L > L∗(C), then there exists at least two (C, L)−barriers and they are
totally ordered. Then we can define a maximal and a minimal (C, L)−barrier.

3 The maximal (C, L)−barrier is unstable from above and the minimal
(C, L)−barrier is stable from below.
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Blocking waves

We can draw the following consequences, if L > L∗(C) :

The front cannot cross the minimal (C, L)−barrier if it is initially below it.

The extra cost we have to pay to cross the obstacle is to create a profile
above the maximal (C, L)−barrier.

x
−L L

X
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Blocking waves : Idea of the proof

1st step : Reduction of the problem.

− p′′ − Cp′ = f (p), on [−L, L],

− p′′ = f (p), on R \ [−L, L],
p(−∞) = 1, p(+∞) = 0, p > 0.

This problem may be reduced to [−L, L] by introcuding β = p(−L) and
α = p(L). Moreover, since we have conservation of the energy on (−∞,−L) and
(L,+∞), we obtain the reduced problem

−p′′ − Cp′ = f (p), on [−L, L],
p(−L) = β, p(L) = α,
1
2 p′(−L)2 + F(β) = F(1), 1

2 p′(L)2 + F(α) = 0.
(P)
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Blocking waves : Idea of the proof

System (P) can be easily interpreted in the phase plane (p, p′) 11. Let X = p,
Y = p′, the system rewrites into

X′ = Y, X(0) = X0,

Y′ = −CY− f (X), Y(0) = Y0.

We define an energy E : R2 → R by : E(X, Y) :=
1
2

Y2 + F(X).
Two interesting curves appear :

E−1(F(1)) ⊃ ΓB :=
{
(x, y) ∈ [0, 1]× (−∞, 0], y = −

√
2
(

F(1)− F(x)
)}

,

E−1(0) ⊃ ΓA :=
{
(x, y) ∈ [0, θc]× (−∞, 0], y = −

√
−2F(x)

}
.

A (C, L)-barrier can be seen there as a trajectory with
(
X(−L), Y(−L)

)
∈ ΓB

such that
(
X(L), Y(L)

)
∈ ΓA.

11. T.J. Lewis and J.P. Keener, Wave-block in excitable media due to regions of depressed
excitability, SIAM Journal on Applied Mathematics, 2000.
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Blocking waves : Idea of the proof

Therefore, we are left studying the image of ΓB by the flow of the differential
system.
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Blocking waves : Idea of the proof

2nd step : Shooting method.
We assume that 0 < α < β < 1 are given (α < θc := F−1(0)). Then we solve the
problem : find C(α, β) and L(α, β) such that the solution to the Cauchy problem

− p′′ − C(α, β)p′ = f (p), on [−L(α, β), L(α, β)],

p(L(α, β)) = α,
1
2

p′(L(α, β))2 + F(α) = 0,

verify p(−L(α, β)) = β, 1
2 p′(−L(α, β))2 + F(β) = F(1).

Because we look for p decreasing, we can invert it into a function X(p). Then we

introduce w(p) = 1
2 p′(X(p))2 + F(p). We compute

w′(p) = p′′(X(p))X′(p)p′(X(p)) + f (p) = p′′ + f (p)

= C(α, β)
√

2(w(p)− F(p)).
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Blocking waves : Idea of the proof

Thus we look for a function w on [α, β] solution to the Cauchy problem

w′(p) = C(α, β)
√

2(w(p)− F(p)), w(α) = 0,

such that w(β) = F(1). We use a shooting method.
Once this function is constructed, we notice that we have

L(α, β) =
1
2
(X(α)− X(β)) =

1
2

∫ α

β
X′(p) dp =

1
2

∫ α

β

dp
p′(X(p))

=
1
2

∫ β

α

1√
2(w(p)− F(p))

dp.
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Blocking waves : Idea of the proof

Summary

For any 0 < α < β < 1, with α < θc, there exists a unique C(α, β) such that the
reduced problem (P) has a unique solution. Then L(α, β) is given by the above
expression.

3rd step : For C > c∗ and L, find α, β such that C = C(α, β) and

L = L(α, β) = 1
2

∫ β
α

1√
2(w(p)−F(p))

dp.

We use monotony and continuity argument from comparison principles on the
system (P).

Some references :

J. Pauwelussen, One way traffic of pulses in a neuron, J. Math. Biol., 1982

T.J. Lewis and J.P. Keener, Wave-block in excitable media due to regions of depressed
excitability, SIAM Journal on Applied Mathematics, 2000.

G. Chapuisat and R. Joly, Asymptotic profiles for a traveling front solution of a biological
equation, Math. Mod. Methods Appl. Sci., 2011.

H. Berestycki, N. Rodriguez, L. Ryzhik, Traveling wave solutions in a reaction-diffusion
model for criminal activity, SIAM MMS, 2013.
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Blocking waves : numerical example

In the following example, we consider the previous model for Wolbachia invasion
and consider that C = 0.07 on the domain [−20,−10].
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Blocking waves : numerical examples

We assume now that ∂x log(N) =

{ C
2 , on [−L, L];
0, on R \ [−L, L].

Figure – Left : Blocking with L = 6 and C = 0.5 ; Right : Propagation with L = 6 and
C = 0.2.
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Blocking waves : numerical examples

We assume now that ∂x log(N) =

{ C
2 , on [−L, L];
0, on R \ [−L, L].

Figure – Left : Blocking with L = 0.5 and C = 2 ; Right : Propagation with L = 0.5
and C = 1.
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Conclusion and perspectives

With these studies we have answered to some question related to the replacement
strategy (using Wolbachia) and to the Sterile/Incompatible Insect Technique. In
particular,

The success of the spatial propagation of the Wolbachia-infected population
depends strongly on the position of the releases, which must be done in a
sufficiently large area with a sufficient amount of mosquitoes.

Spatial heterogeneities in the environment may block the propagation.

Neglecting the spatial dependancy, the study of the success of these
strategies may be performed and optimized.

However, this study is not complete and there is still many mathematical
questions to solve, for instance :

Better description of the optimal shape of the release function.

Extend the study to the system of equation.

Mathematics are also really useful to study the time dynamics of mosquitoes
life cycle.
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Conclusion and perspectives
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