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Introduction

Because of the number of diseases that they carry, mosquitoes are considered
as the most dangerous animal for human.

There are more than 2500 species of mosquitoes and, apart from Antartica,
mosquitoes are found in every region of the world. Most species are
inoffensive to human but several of them are vectors for diseases :

Aedes mosquitoes (like Aedes Aegypti and Aedes Albopictus) are vectors for
dengue fever, yellow fever, chikugunya, and zika.
Anopheles mosquitoes are the main vector of the transmission of Plasmodium
parasites that causes malaria.
Culex mosquitoes are the main vector of west Nile virus.
Other mosquito-borne parasites include Myiasis, Filariasis, some Encephalitis,
. . .
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Aedes aegypti in the world

Mosquitoes Aedes Aegypti and Aedes Albopictus are the main vector (but also for
Chikugunya, and Zika). Aedes aegypti mosquitoes are mainly present in tropical
region of the world :
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Aedes albopictus in Europe

Aedes albopictus (usually called “tiger mosquitoes”) is also present in more
temperated region.

Distribution of Aedes albopictus in Europe in October 2014 1.

1. source : European Center for Disease Prevention and Control (ECDC) and European Food
Safety Authority (EFSA) VectorNet
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Aedes albopictus in France

Source : Ministère
des Solidarités et
de la Santé
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Fight against arboviruses

In absence of vaccine or curative treatment, acting on the population of
mosquitoes Aedes is essentially the only feasible control method.
The aim of these lectures is to present some mathematical questions related to
the control of mosquitoes population.

Mathematical modeling.

Dynamical system to determine time dynamics.

PDE of reaction-diffusion type to determine the spatio-temporal dynamics.

Optimization tools.
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1 Bio-ecology and monitoring of Aedes mosquitoes
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Vector-borne diseases
Two vector control methods by releases

2 Mathematical modeling
Mosquitoes life cycle
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Optimization of the releases for the Sterile Insect technique
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Bio-ecology and monitoring of Aedes mosquitoes Life cycle of mosquitoes

Main vector : Aedes mosquitoes

Some fact about Aedes mosquitoes, considered as the most dangerous species of
mosquitoes for human :

There are more than 100 species of Aedes among them the major arbovirus
vectors are Aedes aegypti (tropical region) and Aedes alpopictus (more
resistants to low temperature).

Its life cycle is divided into two phases : aquatic (egg, larva, pupa) and aerial
(adult).

Female lays 40-80 eggs by oviposition. Several oviposition per female during
her life.

Only females suck bloods, preferentially from humans, to maturate their eggs.

Adults can fly and their dispersal is estimated less than 1km during its life.
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Bio-ecology and monitoring of Aedes mosquitoes Life cycle of mosquitoes

Aedes mosquitoes

Aquatic phase :
egg (few days to several
months)
larvae (3 days to several weeks)
pupa (1-3 days)
Adult phase (∼ 1 month)
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Bio-ecology and monitoring of Aedes mosquitoes Data acquisition
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Bio-ecology and monitoring of Aedes mosquitoes Data acquisition

Acquiring data on mosquito population is by no means an easy taks. Here is a list
(non-exhaustive) of several techniques :

Trapping counts. Installing trap in the field and collecting regularly the captured
individuals (it can be adults or eggs or preferentially adults females
depending on the traps).
Easy and cheap but require a large workforce and may be biased
since the mosquito population can adapt.

Laboratory data. Data acquired on a colony raised in the laboratory. Commonly
used when a lab colony has been established.
Easy to get, but laboratory conditions can never be the same as in
the field.

Genetic data among trapped individuals.
Provide important and valuable informations, but very expensive to
collect.

Mark Release Recapture experiments. MRR experiments rely on the released of
marked adults from the lab into the field with a trapping network
around the release locations. It is used in particular to provide
informations on the dispersal of mosquitoes.
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Bio-ecology and monitoring of Aedes mosquitoes Vector-borne diseases

Vectors and vector-borne diseases

Definitions

A vector is an arthropod which actively transmits an infectious agent.
A vector-borne disease is any infectious human disease whose agent (parasite,
virus, bacterium) can be transmit by a vector.

According to World Health Organization 2 :

Vector-borne diseases account for more than 17% of all infectious diseases,
causing more than 700 000 deaths annually.

More than 3.9 billion people in over 128 countries are at risk of contracting
dengue, with 96 million cases estimated per year.

Malaria causes more than 400 000 deaths every year globally, most of them
children under 5 years of age.

Other diseases such as Chagas disease, leishmaniasis and schistosomiasis
affect hundreds of millions of people worldwide.

Many of these diseases are preventable through informed protective measures.

Mosquito is the best known diseases vector. Others include ticks, flies, bugs, ...
2. see https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.
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Bio-ecology and monitoring of Aedes mosquitoes Vector-borne diseases

Vector competence

The transmission of the virus from mosquito to human being is done through the
saliva, during a bite. It is divided into three main steps

The virus infects the vector during a blood meal.

The virus multiplies in the vector and manages to reach the salivary glands

The virus leaves the vector in its saliva.

definition

The time required to complete the three steps of arbovirus transmission is called
the extrinsic incubation period.
The ability of a vector population to get infective for a given infectious agent is
called vector competence. It can be quantified as the frequency of vector
individuals which get infective after a blood meal on an infected vertebrate.
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Bio-ecology and monitoring of Aedes mosquitoes Vector-borne diseases

Vectorial capacity

definition

The vectorial capacity quantifies the ability of a vector population to transmit a
given virus to human population. It is the daily rate at which future inoculations
arise from a currently infective case.

Dye 3 gives the following formula for vectorial capacity

VC =
ma2bpτEIP

− log(p)
.

where

τEIP is the duration of the extrinsic incubation period ;

a is the biting rate ;

m is the relative abundance (number of active females per human) ;

p is the daily survival rate of females ;

b ∈ [0, 1] is the vector competence.

3. C. Dye, The analysis of parasite transmission by bloodsucking insects, 1992.
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Bio-ecology and monitoring of Aedes mosquitoes Vector-borne diseases

Vector control

Vector control methods are human interventions which aim at

protect individuals from infectious bites ;

prevent or reduce the circulation of vector-borne diseases.

Several strategies may be used to reduce the vectorial capacity (by reducing a
and/or m and/or b) :

environmental fight (remove breeding sites) ;

mechanical fight (trapping) ;

chemical fight (use of insecticide) ;

biological fight (predator introduction or replacement strategy) ;

genetic fight (RIDL, gene drive, sterile insect technique).
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Bio-ecology and monitoring of Aedes mosquitoes Two vector control methods by releases

Sterile (or Incompatible) Insect Technique (SIT)

The sterile insect technique has been introduced in the ’50 by Raymond C.
Bushland and Edward F. Knipling. It has succesfully been used to eradicate the
screw-worm fly in North and Central America.

Idea Massive release of sterilized males. These males will mate with
females. The eggs resulting from these mating will not hatch, since
the males are not fertile.

Objective To reduce the size of (or even eradicate) the population of Aedes
mosquitoes.

This strategy is implemented and studied to eliminate mosquitoes in several
countries.
A similar strategy is the so-called incompatible insect technique, consisting in
releasing incompatible males (for instance males infected with the bacteria
Wolbachia), since it has been observed that sterilized males are less competitive
for reproduction.
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Bio-ecology and monitoring of Aedes mosquitoes Two vector control methods by releases

Example of experimental results conducted in 2015-2017 in two isolated riverine
islands in Guangzhou, China 4.

4. Taken from X. Zheng et al, Incompatible and sterile insect techniques combined eliminate
mosquitoes, Nature 572, 2019.
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Bio-ecology and monitoring of Aedes mosquitoes Two vector control methods by releases

Wolbachia

Endo-symbiotic bacteria found in most arthropod species.

Maternally transmitted from mother to offsprings.

Causes cytoplasmic incompatibility (CI) and blocks transmission of some
viruses (Dengue, Chikungunya, Zika) by Aedes mosquitoes.

Several side-effects on its host (reduces fecundity, reduces lifespan, ...).

♀\♂ Infected Sound
Infected I I
Sound × S
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Bio-ecology and monitoring of Aedes mosquitoes Two vector control methods by releases

The Wolbachia strategy

Releasing Wolbachia-infected mosquitoes to replace the existing population.

Figure taken from the world mosquito program

http://www.eliminatedengue.com/program
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Bio-ecology and monitoring of Aedes mosquitoes Two vector control methods by releases

World mosquito program

N. Vauchelet MBMC Samos 2019



Bio-ecology and monitoring of Aedes mosquitoes Two vector control methods by releases

Number of mosquitoes release,
time of the releases and changes
in infection frequencies over time
in traps in two locations near
the city of Cairn in north-eastern
Australia.
(Dotted line = interruption due
to a cyclone.)
Taken from [Hoffmann et al, Suc-

cessful establishment of Wolbachia

in Aedes populations to suppress

dengue transmission, Nature, 476,

2011.]
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Bio-ecology and monitoring of Aedes mosquitoes Two vector control methods by releases

Frequency of Wolbachia-infected mosquitoes in the traps in Tubiacanga (Rio de
Janeiro, Brazil). The colored zones correspond to the released period : Pink :
release of a strain from the lab ; Green : release of a strain of mosquitoes crossed
with wild mosquitoes.
Taken from [Azambuja Garcia et al, Matching the genetics of released and local Aedes

aegypti populations is critical to assure Wolbachia invasion, PLoS Negl Trop Dis, 13,

2019.]
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Mathematical modeling Mosquitoes life cycle
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Mathematical modeling Mosquitoes life cycle

Mathematical model for mosquito life cycle

The life cycle for mosquitos may be schematized as follows :

βE
E

Eggs

δE

τE
L

Larvae

δL

τL
P

Pupa

δP

ντP
F

Females

δF

(1− ν)τP M

Males

δM

βE(M) birth rate (per female) ;

τE, τL, τP transition rates ; ν sex ratio ;

δE, δL, δP, δM, δF death rates.
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Mathematical modeling Mosquitoes life cycle

Mosquito life cycle

d
dt

E = βE(M)F︸ ︷︷ ︸
birth

(
1− E

K

)
︸ ︷︷ ︸

competition intraspecific

− τEE︸︷︷︸
transition to larvae

− δEE︸︷︷︸
death

,

d
dt

L = τEE−
(

cL︸︷︷︸
competition

+ τL︸︷︷︸
transition

+ δL︸︷︷︸
death

)
L,

d
dt

P = τLL− (τP + δP)P,

d
dt

F = ντPP− δFF,

d
dt

M = (1− ν)τPP− δM M.

We first notice that if we assume that ν = 1
2 and δF = δM. Then, the equations

for F and M are similar. Thus, if the initial data are the same, then for any time
F = M.
From now on, we will consider F = M and denote A = F = M.
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Mathematical modeling Mosquitoes life cycle

Mathematical model for mosquitos life cycle

Then the system reduces to

d
dt

E = βE A
(

1− A
K

)
− τEE− δEE,

d
dt

L = τEE−
(
cL + τL + δL

)
L,

d
dt

P = τLL− (τP + δP)P,

d
dt

A =
τP
2

P− δF A.
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Mathematical modeling Mosquitoes life cycle

Mathematical model : simplification

d
dt

E = βE A
(

1− A
K

)
−
(
τE + δE

)
E,

d
dt

L = τEE−
(
cL+τL + δL

)
L,

d
dt

P = τLL− (τP + δP)P,

d
dt

A =
τP
2

P− δA A.

Assumptions :

Fast dynamics for pupa ;

Intra-specific competition at larval stage neglected (c� 1) ;

Fast dynamics at larval stage.

N. Vauchelet MBMC Samos 2019



Mathematical modeling Mosquitoes life cycle

Mathematical model : simplification

d
dt

E = βE A
(

1− A
K

)
−
(
τE + δE

)
E,

d
dt

L = τEE−
(
cL+τL + δL

)
L,

0 = τLL− (τP + δP)P,
d
dt

A =
τP
2

P− δA A.

Assumptions :

Fast dynamics for pupa ;

Intra-specific competition at larval stage neglected (c� 1) ;

Fast dynamics at larval stage.

N. Vauchelet MBMC Samos 2019



Mathematical modeling Mosquitoes life cycle

Mathematical model : simplification

d
dt

E = βE A
(

1− A
K

)
−
(
τE + δE

)
E,

d
dt

L = τEE−
(
τL + δL

)
L,

0 = τLL− (τP + δP)P,
d
dt

A =
τP
2

P− δA A.

Assumptions :

Fast dynamics for pupa ;

Intra-specific competition at larval stage neglected (c� 1) ;

Fast dynamics at larval stage.

N. Vauchelet MBMC Samos 2019
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Mathematical modeling Mosquitoes life cycle

Mathematical model : simplified model

Finally, a simplified model for the mosquito dynamics is given by

d
dt

E = βE A
(

1− A
K

)
−
(
τE + δE

)
E,

d
dt

A = βAE− δA A,

where βA =
τpτLτE

2(τL+δL)(τP+δP)
.

We will now model the Wolbachia strategy and the Sterile Insect Technique.

Assumption : Density of males = density of females.
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Mathematical modeling Mathematical model for vector control strategies
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Mathematical modeling Mathematical model for vector control strategies

Including Wolbachia

We first consider the Wolbachia strategy :

We denote by a subscript i the infected population and by u the uninfected
population.

Assuming uniform repartition of the mosquitos population, the probability for
a female to mate with an uninfected male is Au

Au+Ai
, with an infected male is

Ai
Au+Ai

.

sh : cytoplasmic incompatibility parameter (fraction of uninfected females’
eggs fertilized by infected males which will not hatch).

1− s f ∈ (0, 1) fecundity reduction ; γ > 1 mortality increase.

u is the release function of infected adults.
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Mathematical modeling Mathematical model for vector control strategies

Mathematical model : Wolbachia strategy

Model for the Wolbachia technique

Then, we have everything at hand to write the mathematical model for the
Wolbachia strategy. The dynamics for uninfected eggs Eu, uninfected adults Au,
Wolbachia-infected eggs Ei, Wolbachia-infected adults Ai is given by

d
dt

Eu = βE Au

(
Au

Au + Ai
+ (1− sh)

Ai
Au + Ai

)(
1− Au + Ai

K

)
− (τE + δE)Eu,

d
dt

Au = βAEu − δA Au,

d
dt

Ei = (1− s f )βE Ai

(
1− Au + Ai

K

)
− (τE + δE)Ei,

d
dt

Ai = βAEi − γδA Ai + u.
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Mathematical modeling Mathematical model for vector control strategies

Mathematical model : Sterile Insect Technique

Then, we consider the Sterile Insect Technique,

Ms denotes the density of sterilized males, with death rate δs ;

u is a release function of sterilized males ;

The probability to mate with a fertile mosquito is given by A
A+γMs

, where γ

is a parameter for the mating preference.

Model for the Sterile Insect Technique

The dynamics for eggs E, adults A, sterile males Ms is given by

d
dt

E = βE A
(

1− A
K

)
A

A + γMs
−
(
τE + δE

)
E,

d
dt

A = βAE− δA A,

d
dt

Ms = u− δs Ms.
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Mathematical modeling Equilibria and stability
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Mathematical modeling Equilibria and stability

Equilibrium

Let us consider a general autonomous systems for which we assume to have
existence of a global solution on [0,+∞). We recall that existence and uniqueness
theory is now well established under regularity assumptions on f .

Let f : Rd → Rd, f ∈ C1(Rd),{
y′(t) = f (y(t)), t ∈ [0,+∞),

y(0) = y0 ∈ Rd.
(C0)

We call flow and we denote φ(t, y0) a solution to this problem.
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Mathematical modeling Equilibria and stability

Equilibrium

For the above autonomous system, we introduce the following definitions :

Definitions

An equilibrium is a stationnary solution, i.e. y ∈ Rd such that f (y) = 0.

An equilibrium is stable if ∀ ε > 0, ∃ δ > 0 such that ∀ y ∈ B(y, δ),
φ(t, y) ∈ B(y, ε).

An equilibrium is asymptotically stable if it is stable and ∃ η > 0 such that
∀ y ∈ B(y, η), ‖φ(t, y)− y‖ →

t→+∞
0.

An equilibrium is globally asymptotically stable (GAS) if it is stable and the
above implication is true for all η > 0.

An equilibrium is unstable if it is not stable.
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Mathematical modeling Equilibria and stability

Stability

For general system y′ = f (y). We use a Taylor expansion

f (y) = f (y) + D f (y) · (y− y) + o(‖y− y‖)
= D f (y) · (y− y) + o(‖y− y‖).

We deduce some stability results on the non-linear problem y′ = f (y) from a
stability analysis on the linear problem z′ = D f (y)z.

The flow for this linear system is φ(t, z0) = etD f (y)z0. Then the long time
behaviour of φ may be computed easily.

Proposition (Lyapunov stability Theorem)

Let us consider the Cauchy problem (C0), let y be an equilibrium ( f (y) = 0.
Denoting (λ1, . . . , λk) (k ≤ d) the eigenvalues of D f (y).
Then the equilibrium is (linearly) asymptotically stable if Re(λ) < 0 for all
eigenvalues λ ∈ Sp(A).
The equilibrium is (linearly) unstable if there is at least one eigenvalue for which
real part is positive.
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Dynamical system

Let us first consider the Sterile Insect Technique.

Model for the Sterile Insect Technique

Recalling that we denote E, A, Ms the density of eggs, adults, and sterile
mosquitoes, respectively, the model reads

d
dt

E = βE A
(

1− A
K

)
A

A + γMs
−
(
τE + δE

)
E,

d
dt

A = βAE− δA A,

d
dt

Ms = u− δs Ms.
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Dynamical system without control

We first investigate the equilibria in the case u = 0.

Equilibria

Under the assumptions δs > δA and βEβA > δA(τE + δE), there are two
equilibria :

The extinction equilibrium (E∗1 , A∗1 , M∗s ) = (0, 0, 0),

The non-extinction equilibrium (E∗2 , A∗2 , M∗s ) =
(

E2, βA
δA

E2, 0
)

with

E2 = K
(

1− (τE+δE)δA
βE βA

)
.

Moreover, the non-extinction equilibrium is linearly asymptotically stable, whereas
the extinction equilibrium is linearly unstable.

This results implies in particular that the extinction equilibrium can not be reach
with this mathematical model. This is the reason why, in some modeling 5, a small
Allee effect has been added : replacing βE by βE(1− e−β′(A+γMs)).

5. H. Bossin, Y. Dumont and M. Strugarek, Using sterilizing males to reduce or eliminate
Aedes populations : insights from a mathematical model, Appl. Math. Model., 68 (2019)
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Dynamical system with constant control

Let us consider now the case of a constant release function u = U.

Equilibria

Under above assumptions, if we assume moreover that U is large enough, more

precisely U >
Kδs((τE + δE)δA − βEβA)

2

4(τE + δE)δAγβEβA
, then there is only one equilibrium :

The extinction equilibrium (E∗1 , A∗1 , M∗s ) = (0, 0, U
δs
) which is globally

asymptotically stable.

As a consequence, when u = U, the system converges to the extinction steady
state, i.e. the population will be eradicated.

However, after the end of the treatment period (i.e. when u = 0), the
dynamical system tends to come back to the non-extinction equilibrium, in
particular due to spatial reinvasion when system are not insolated. Then it is
necessary to perform new releases.

It is also possible to look for feedback control function, i.e. u = Ψ(A) (cf
Presentation of Pierre-Alexandre Bliman).
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Dynamical system : an optimal control problem

The question is to know how to optimize the release function to be as close as
possible to the extinction equilibrium at the end of a treatment period starting at
the non-extinction equilibrium (E(t = 0), A(t = 0)) = (E∗2 , A∗2)

6.

Cost

J(u) =
1
2

E(T)2 +
1
2

F(T)2.

Constraints The local release of mosquitoes is bounded : 0 ≤ u ≤ U.
The total number of mosquitoes used is bounded (production

limitation) : 0 ≤
∫ T

0 u(t)dt ≤ C.

Optimization problem

min
u∈UU,C,T

J(u), with UU,C,T =

{
0 ≤ u ≤ U a.e.,

∫ T

0
u(t)dt ≤ C

}
.

6. L. Almeida, M. Duprez, Y. Privat, N. V., Mosquito population control strategies for fighting
against arboviruses, Math. Biosc. Eng. 2019
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Dynamical system : optimal control

Existence of an optimal control

We may prove that this minimization problem has a solution u∗. Moreover,
assuming that UT > C, the optimal control strategy uses the maximal amount of

mosquitoes, i.e.
∫ T

0 u∗(t) dt = C, and there exists T0 ∈ (0, T) such that u∗ = 0
on (T0, T) (consequence of the PMP).

Sketch of proof (existence) :
Let us consider (un)n∈N a minimizing sequence in UU,C,T, i.e.

lim
n→+∞

J(un) = inf
UU,C,T

J.

Since (un) belongs to UU,C,T it is uniformly bounded in L1 ∩ L∞(0, T). Then,

we may extract a subsequence that converges weakly-* in L∞(0, T) towards a
limit call u. Clearly u ∈ UU,C,T. Moreover, M′s,n, En, An are also uniformly
bounded. Thus, by Arzela-Ascoli Theorem, we may extract subsequences that
converge uniformly.
Passing into the limit in the system of ODE, the limit satisfies the same
differential system. Since by definition of minimizing sequence we have
J(u) = infUU,C,T

J, it allows us to conclude the proof of existence.
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Numerical results

Figure – Simulation of the sterile insect technique for T = 80, C = 150000, U = 5000
(1st line), 20000 (2nd line).
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Optimization of the releases Optimization of the releases for the Sterile Insect technique

Numerical results

Figure – Simulation of the sterile insect technique. Influence of the mating
competitiveness of sterilizing males parameter γ. We take T = 80, C = 150000,
U = 20000 with different values of γ : γ = 1

3 (1st line), 1 (2nd line).
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Mathematical model : Wolbachia strategy

We then consider the dynamical system for the Wolbachia strategy that we recall
below without releases (i.e. u = 0)

d
dt

Eu = βE Au

(
1− sh

Ai
Au + Ai

)(
1− Au + Ai

K

)
− (τE + δE)Eu,

d
dt

Au = βAEu − δA Au,

d
dt

Ei = (1− s f )βE Ai

(
1− Au + Ai

K

)
− (τE + δE)Ei,

d
dt

Ai = βAEi − δδA Ai.

The equilibria and their stability are given by the following results.
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Mathematical model : Wolbachia strategy

Equilibria and stability

Let us consider that 1 < δ, 0 < s f < 1, 0 < sh ≤ 1. We denote b =
βAβE

(τE + δE)
.

Assume moreover that (1− s f )b > δδA, sh +
1−s f

δ > 1.
Then there are four distinct non-negative equilibria :

Wolbachia invasion

(E∗uW , A∗uW , E∗iW , A∗iW) :=

(
0, 0, K

(
1− δδA

b(1− s f )

)
, K
( βA

δδA
− βA

b(1− s f )

))
is stable ;

Wolbachia extinction

(E∗uE, A∗uE, E∗iE, A∗iE) :=
(

K
(

1− δA
b

)
, K
( βA

δA
− βA

b

)
, 0, 0

)
is stable ;

co-existence steady state (E∗uC, A∗uC, E∗iC, A∗iC) is unstable.

extinction (0, 0, 0, 0) is unstable.
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Towards an optimization problem

As a consequence, there are two basins of attraction :

The basin of attraction of the Wolbachia invasion equilibrium ;

The basin of attraction of the Wolbachia extinction equilibrium.

A direct consequence of this result is that it suffices to take u such that at the
end of the releases period the solution belongs to the basin of attraction of the
Wolbachia invasion equilibrium to guarantee the success of this strategy.

The question we want to address is the optimisation of the release function u.
Hence, we consider the above dynamical system and we assume that at the
beginning of the releases, the system is in the Wolbachia-free equilibrium

Eu(0) = K
(

1− δA
b

)
, Au(0) = K

(
βA
δA
− βA

b

)
, Ei(0) = Ai(0) = 0.
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Towards an optimization problem

As a consequence, there are two basins of attraction :

The basin of attraction of the Wolbachia invasion equilibrium ;

The basin of attraction of the Wolbachia extinction equilibrium.

A direct consequence of this result is that it suffices to take u such that at the
end of the releases period the solution belongs to the basin of attraction of the
Wolbachia invasion equilibrium to guarantee the success of this strategy.

The question we want to address is the optimisation of the release function u.
Hence, we consider the above dynamical system and we assume that at the
beginning of the releases, the system is in the Wolbachia-free equilibrium

Eu(0) = K
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b
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b
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Optimization of the releases Optimization of the releases for the Wolbachia strategy

Towards an optimization problem

We want to optimize the release strategy to be as close as possible to the
Wolbachia-infected equilibrium at the final time of treatment, denoted T. That is,
we want to determine the release function u which minimizes the distance to the
desired equilibria :

Cost The cost function is defined by

J(u) =
1
2

(
Eu(T)2 + Au(T)2 +

(
Ei(T)− E∗iW

)2

+
+
(

Ai(T)− A∗iW ,
)2

+

)
.

Constraints The local release of mosquitoes is bounded : 0 ≤ u ≤ U.
The total number of mosquitoes used is bounded (production

limitation) : 0 ≤
∫ T

0 u(t)dt ≤ C.

Optimization problem

min
u∈UU,C,T

J(u), with UU,C,T =

{
0 ≤ u ≤ U a.e.,

∫ T

0
u(t)dt ≤ C

}
.
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Numerical simulations

We may prove that this optimal problem admits (at least) one solution. However,
it is more difficult to have a precise description of this optimum, apart with
numerical simulations.

Table – Values of the parameters.

Parameter Name Value
βE Effective fecundity 10
b Growth rate 3.125

δA Female death rate 0.04
sh Probability of cytoplasmic incompatibility 0.9951

1− s f
Fecundity reduction of infected females
with respect to uninfected females

0.95

δ Increase of mortality for infected mosquitoes 1.25
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Numerical results

Figure – Simulation of the wolbachia technique for T = 80, C = 10000, U = 500 (1st
line), 1500 (2nd line). The dashed lines correspond to the coexistence equilibria..
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Optimization of the releases Optimization of the releases for the Wolbachia strategy

Numerical results

Figure – Simulation of the wolbachia technique for T = 80, C = 1000, U = 50 (1st
line), 150 (2nd line). The dashed lines correspond to the coexistence equilibria..
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Optimization of the releases Reduction of the problem

Observations

Although we did not find interesting properties for the solutions of the
optimization problem, we observe interesting features from the numerical results

It seems that when the number of mosquitoes available is enough to reach
the basin of attraction of the desired equilibrium, the optimal strategy
consists in acting strongly at the beginning of the release period.

On the contrary, when the number of mosquitoes available is not enough, it
seems better to act only at the end of the time interval.

These observations can be explained mathematically by approaching the
optimization problem to a simpler problem that can be solved.
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Mathematical model : Wolbachia strategy

We first recall the dynamical system.

d
dt

Eu = βE Au

(
1− sh

Ai
Au + Ai

)(
1− Au + Ai

K

)
− (τE + δE)Eu,

d
dt

Au = βAEu − δA Au,

d
dt

Ei = (1− s f )βE Ai

(
1− Au + Ai

K

)
− (τE + δE)Ei,

d
dt

Ai = βAEi − δδA Ai + u.
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Optimization of the releases Reduction of the problem

Mathematical model : Wolbachia strategy

We first recall the dynamical system.
We assume fast dynamics of the egg compartment.

0 = βE Au

(
1− sh

Ai
Au + Ai

)(
1− Au + Ai

K

)
− (τE + δE)Eu,

d
dt

Au = βAEu − δA Au,

0 = (1− s f )βE Ai

(
1− Au + Ai

K

)
− (τE + δE)Ei,

d
dt

Ai = βAEi − δδA Ai + u.
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Mathematical model : Wolbachia strategy

We deduce from the first and third equation an expression of Eu and Ei with
respect to Au and Ai that we inject in the second and fourth equation. We
obtain :

Simplified model for the Wolbachia technique

Denoting b = βE βA
τE+δE

,
d
dt

Ai = (1− s f )bAi
(
1− Ai + Au

K
)
− δδA Ai + u,

d
dt

Au = bAu(1− sh
Ai

Ai + Au
)
(
1− Ai + Au

K
)
− δA Au.
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Mathematical model : equilibria

We first consider the steady states (equilibria) when u = 0.

Steady states

As soon as s f + δ− 1 < δsh, there are four distinct nonnegative equilibria :

Wolbachia invasion (A∗iW , A∗uW) := (K− δu
b

δ
1−s f

, 0) is stable ;

Wolbachia extinction (A∗iE, A∗uE) := (0, K− δu
Au

) is stable ;

co-existence steady state

(A∗iC, A∗uC) :=
((

K− δu
b

δ
1−s f

) δ−(1−s f )

δsh
,
(
K− δu

b
δ

1−s f

) δ(sh−1)+(1−s f )

δsh

)
is

unstable ;

extinction (0, 0) is unstable.
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Mathematical model : equilibria
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Figure – Phase portrait representing the equilibria and their stability for the dynamical
system without spatial diffusion
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Optimal control problem

As above, we want to optimize the release strategy to be as close as possible to
the Wolbachia-infected equilibrium at the final time of treatment, denoted T :

Cost

J(u) =
1
2

Au(T)2 +
1
2
(A∗iW − Ai(T))+

2.

Constraints The local release of mosquitoes is bounded : 0 ≤ u ≤ U.
The total number of mosquitoes used is bounded (production

limitation) : 0 ≤
∫ T

0 u(t)dt ≤ C.

Optimization problem

min
u∈UU,C,T

J(u), with UU,C,T =

{
0 ≤ u ≤ U a.e.,

∫ T

0
u(t)dt ≤ C

}
.
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Reduction of the optimal problem

Then, we simplify this system by using the large fertility asymptotics : introduce

the parameter ε such that b = b0

ε and assume that ε� 1,{
d
dt Ai = (1− s f )

b0

ε Ai
(
1− Ai+Au

K
)
− δδu Ai + u,

d
dt Au = b0

ε Au(1− sh
Ai

Ai+Au
)
(
1− Ai+Au

K
)
− δu Au.

Formally, letting ε→ 0, we deduce

Ai + Au = K(1− εn) + o(ε).

Then, we introduce

n =
1
ε
(1− Ai + Au

K
), p =

Ai
Ai + Au

(fraction of infected).
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Reduction of the optimal problem
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Large fertility asymptotics

After straightforward computations, we find
d
dt

n = −1− εn
ε

(b0n(sh p2 − (s f + sh)p + 1)− δu((δ− 1)p + 1))− u
εK

,

d
dt

p = p(1− p)(b0n(sh p− s f ) + (1− δ)δu) +
u(1− p)

K(1− εn)
.

Formally, when ε→ 0, assuming the convergence p→ p0 and n→ n0, we deduce
from the first equation

n0 =
δu((δ− 1)p0 + 1) + u/K

b0(sh p02 − (s f + sh)p0 + 1)
.
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Large fertility asymptotics

After straightforward computations, we find
d
dt

n = −1− εn
ε
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εK

,

d
dt

p = p(1− p)(b0n(sh p− s f ) + (1− δ)δu) +
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.
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Reduction of the model

Injecting this expression into the second equation, we obtain after letting ε→ 0,

d
dt

p0 = δδush
p0(1− p0)(p0 − θ)

b0(sh p02 − (s f + sh)p0 + 1)
+

u
K
· (1− p0)(1− sh p0)

sh p02 − (s f + sh)p0 + 1
,

with

θ =
s f + δ− 1

δsh
.

Notice that for δ ≥ 1 and s f < sh, we have θ ∈ (0, 1) and the denominator never

vanishes on (0, 1).
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Reduction of the optimal problem

This formal derivation can be made rigorous, we obtain that as ε→ 0, the system
reduces to

Reduced problem

dp
dt

= f (p) + ug(p),

where

f (p) =
δδush

b0
p(1− p)(p− θ)

(1− p)(1− sh p) + (1− s f )p
, θ =

s f + δ− 1
δsh

,

g(p) =
1
K

(1− p)(1− sh p)
(1− p)(1− sh p) + (1− s f )p

.
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Reduction of the optimal problem

For the cost functional, we recall our choice

J(u) =
1
2

Au(T)2 +
1
2
(A∗iW − Ai(T))+

2.

Introducing the notation p = Ai
Ai+Au

, we have

J(u) =
1
2
((Ai + Au)(T)(1− p(T)))2

+
1
2

(
K(1− ε

δuδ

b0(1− s f )
)− ((Ai + Au)(T)p(T))

)
+

2
.

Thus, with the fact that Ai + Au → K, we deduce that

J(u) →
ε→0

(K(1− p(T)))2.
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Reduced optimal control problem

Reduced optimization problem

min
u∈UU,C,T

(1− p(T))2,

with UU,C,T = {0 ≤ u ≤ U a.e.,
∫ T

0 u(t)dt ≤ C}, where p solves the differential
equation

d
dt

p = f (p) + ug(p), f bistable, g > 0 on (0, 1), g(1) = 0.
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Reduced optimal control problem

This problem is simpler to study than the full system. Indeed, we observe that
when u = 0,

if 0 < p < θ, then d
dt p < 0 ;

if θ < p < 1, then d
dt p > 0.

In other words, the basin of attraction of 1 is (θ, 1), outside this domain, the
solution move away from 1. Hence to be optimal one expects the solution to go to
this basin of attraction as fast as possible. If the solution cannot reach this basin
of attraction, it is better to act at the end of the protocol.
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Reduction of the optimal problem

Using the Pontryagin Maximum Principle, this observation can be made rigorous
and we may prove the following result 7 :

Theorem

Assume T > C/M and above assumptions on the coefficients.

Then, any solution u∗ to the reduced optimal problem satisfies
∫ T

0 u∗(t)dt = C
and is bang-bang (i.e. equal a.e. to 0 or U).

Moreover, if (uε) is a family of minimizers for the optimal problem for the full
system. Then, as ε→ 0, it converges strongly in L1(0, T) to a solution of the
reduced problem. Moreover, we have

lim
ε→0

min
u∈UU,C,T

Jε(u) = min
u∈UU,C,T

(1− p(T))2.

This result implies that when ε is small the optimum is not far from a bang bang
solution. However, from the above numerical result, it seems that it is not bang
bang.

7. L. Almeida, Y. Privat, M. Strugarek, N. V., Optimal releases for population replacement
strategies, application to Wolbachia, SIAM J. Math. Anal. 2019.
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Reduction of the optimal problem

Actually, we can get a precise description of the optimum :

If U ≤ maxp∈[0,θ]−
f (p)
g(p) then the unique solution is given by

u∗ = U1[T−C/U,T].

Otherwise, defining C∗(U) =
∫ θ

0
Udp

f (p)+Ug(p)
, one has

if C < C∗(U) then the solution is unique and equal to u∗ = U1[T−C/U,T] ;

if C > C∗(U) then the solution is unique and equal to u∗ = U1[0,C/U] ;

if C = C∗(U) then there is a continuum of solutions given by
u∗λ = U1[λ,λ+C/U] for λ ∈ [0, T − C/U].
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Mathematical epidemiology Introduction

Some historical facts

In the 18th century, London was strongly affected by an epidemic of
smallpox. A controversial solution is variolation, which involves contacting
individuals with a pustule removed from a patient. This kills the individual or
gives him immunity for life. Daniel Bernoulli (Swiss mathematician,
1700-1782) proposes in 1766 a mathematical model describing this epidemic
and determines whether or not to practice variolation. He proves that by
inoculating part of the population, life expectancy was considerably increased.

In 1911, Sir Ronald Ross (Nobel prize in medicine 1902, 1857-1932) presents
the first mathematical model of malaria transmission, which highlights a
threshold phenomenon. This is one of the first compartmental models. He is
considered one of the founding fathers of mathematical epidemiology.

In 1927, W.O. Kermarck & A.G. Mac Kendrick use the ideas of R. Ross and
propose the SIR model to study the transmission of infection by humans.
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Mathematical epidemiology SIR model

SIR model

In 1927, W.O. Kermack & A. G. McKendrick introduce the so-called
compartmental models : population is divided into susceptible individuals (S),
infected individuals (I), and removed/recovered individuals (R).

S(t)
r

I(t)
a

R(t)

where r is the transmission rate, a is the removal rate.

The SIR system reads



S′ = −r
SI
N

I′ = r
SI
N
− aI

R′ = aI

N = S + I + R.

complemented by initial data

S(0) = S0, I(0) = I0, R(0) = 0.
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SIR model

Conservation.

We first observe that N = S + I + R is a constant. Indeed, S′ + I′ + R′ = 0.

Equilibria.

If we calculate the equilibria, we get
0 = −r

S I
N

0 = r
S I
N
− aI

0 = aI

Looking to the last equation, it gives I = 0, which is the only solution. Thus, we
expect that the number of infected should converge to 0 to reach the equilibrium.

However, it does not give any information about the number of individuals which
has been infected (corresponding to the one in the R compartment at final time).
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SIR model


S′ = −r SI

N

I′ = r SI
N − aI

R′ = aI

Question : Knowing r, a, S0 and I0, can we know if an epidemic will occur or
not ?

We have I′(0) = I0(r
S0
N − a).

If rS0 < aN, then I′(0) < 0 and since S′ ≤ 0, we always have I′(t) < 0.
Thus, the number of infected I will diminish until extinction.

If rS0 > aN, then I′(0) > 0. The number of infected individuals will start to
increase.

We recover the threshold phenomenon, first noticed by Sir Ronald Ross. We

denote R0 =
rS0

aN
, called basic reproduction number.
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SIR model : numerical observation

Example : In a population where 90% of individuals are susceptibles and 10% are
infected (S0 = 0.9, I0 = 0.1).

Case : r = 4, a = 2, thus R0 = 1.8

S
I
R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10

temps

There is a peak of epidemic. At the final time, more than 80% of the population
has been infected.
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SIR model : numerical observation

Example : In a population where 90% of individuals are susceptibles and 10% are
infected (S0 = 0.9, I0 = 0.1).

Case : r = 2, a = 5, thus R0 = 0.36

S
I
R

-0.1

0.0

0.1

0.2

0.3

0.4
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0.6

0.7
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temps

There is no epidemic. Less than 15% of the population has been infected.
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Basic reproduction number R0

The basic reproduction number, R0, is defined as the expected number of
secondary cases produced by a single (typical) infection in a completely
susceptible population.
This quantity defines the epidemic threshold of a particular infection : if R0 < 1,
the infection will die out ; if R0 > 1, the infection will be able to spread, there is
an outbreak risk.

Some examples :

Disease R0 Disease R0

Measles (Rougeole) 12-18 Coqueluche 12-17
Diphtéria 6-7 Smallpox 5-7

Polio 5-7 HIV/AIDS 2-5

SRAS 8 2-5 H1N1 (Grippe A) 9 2-4

Dengue 10 2.5-3.3 Ebola 11 1.5-2.5

8. (outbreak in China 2003)
9. (outbreak 2009)

10. (Salvador (Brazil) outbreak 2002)
11. (West Africa 2014)
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Basic reproduction number R0

To avoid outbreak, we may try to diminish the value of R0. In the SIR model, we
have

R0 =
rS0

aN
.

Then, to diminish R0, one may :

diminish r : quarantine, improve hygiene conditions to avoid contact with
germs, ... ;

increase a : improve treatments ;

diminish S0/N : vaccination campaign. We consider that to stop an

outbreak, one needs to vaccine a proportion

(
1− 1

R0

)
of the population.

(Indeed, in this situation we will have S0 = 1
R0

N, then the new basic

reproduction number will be 1).

Determining R0 is essential to launch a prevention policy, or a vaccination
campaign.
Example : for H1N1, R0 is between 2 and 4. Thus, one needs to vaccinate
between 50 and 75 % of the population.
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Basic reproduction number R0

The basic reproduction number R0 is a dimensionless number

R0 ∝
(

infection

contact

)
·
(contact

time

)
·
(

time

infection

)
In a simple model like SIR, the basic reproduction number is easy to compute.
Indeed, the transmission rate is r, the mean infection time is 1

a .

It becomes more tricky when we are considering infection with multiple types of
infected individuals, or vector-borne disease, or sexually transmitted infections, ...

Remark : Denoting i(t) the number of infected individuals at time t. If a fraction
a leaves the infected compartment by unit of time, then i′(t) = −ai(t), implying
i(t) = e−ati(0). Then, the mean infection time is given by

∫ ∞
0 e−atdt = 1

a .
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Basic reproduction number R0 : example on the SIR model

Recall the SIR model

S′ = −r
SI
N

, I′ = r
SI
N
− aI, R′ = aI, N = S + I + R (constant).

The equilibrium without infection is given by (S, I, R) = (S0, 0, N − S0) where S0
is the (constant) number of individuals. Let us study the stability of this
equilibrium. We linearize around this equilibrium, the linearized variables (s, i, r)
verify

s′ = −r
S0

N
i, i′ = r

S0

N
i− ai, r′ = ai.

Hence the Jacobian is given by J =

0 −rS0/N 0
0 rS0/N − a 0
0 a 0

 .

The eigenvalues of this matrix are {0, rS0 − a}. We deduce :

The steady state without infection is linearly stable provided rS0 ≤ aN, i.e.
R0 ≤ 1.

Hence, the basic reproduction number gives information on the stability of the
equilibrium without infection.
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Basic reproduction number R0

Assume that we have a system in which there are multiple discrete types of
infected individuals (e.g., mosquitoes and humans ; women and men ; or humans,
dogs, and chickens). We define the next generation matrix as the square matrix G
in which the ijth element of G, gij, is the expected number of secondary
infections of type i caused by a single infected individual of type j, again assuming
that the population of type i is entirely susceptible.
Then, the basic reproduction number is given by the spectral radius of G

R0 = ρ(G) = sup{|λ|, λ ∈ Sp (G)}.

The next generation matrix has a number of desirable properties from a
mathematical standpoint. In particular, it is a non-negative matrix and, as such, it
is guaranteed that there will be a single, unique eigenvalue which is positive, real,
and strictly greater than all the others. This is R0.
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Basic reproduction number R0

A method to compute the basic reproduction number has been proposed in
[Diekmann et al] 12. We assume to have a system of ODE describing the dynamics
of an infection :

1 Determine the variables describing the infected states.

2 Determine the equilibrium without infection and linearize around it only the
system for infected states (i.e. compute the Jacobian matrix J).

3 Split the Jacobian matrix J = T + Σ where T is the transmission matrix
(birth of infected individuals) and Σ is the transition matrix (change of state).

4 We have R0 = ρ(−TΣ−1).

Then, we have the fundamental result :

Theorem

Assume that the transmission matrix T is nonnegative, Σ is nonnegative outside
the diagonal with sup{ Re(λ), λ ∈ Sp(Σ)} < 0.
Then, the equilibrium without infection is linearly stable iff R0 ≤ 1.

12. O. Diekmann, J.A. Heersterbeek, J.A.J. Metz, J. Mathematical Biol. 1990
N. Vauchelet MBMC Samos 2019



Mathematical epidemiology Basic reproduction number R0

Ross-Macdonald model

Let us consider a model based on the work of Sir Ronald Ross (Nobel prize in
1902) improved later by George Macdonald (1952) for malaria. It is a vector-borne
disease, i.e. transmitted by a vector : mosquitoes (mainly of genus Anopheles).
The dynamical system includes the mosquitoes dynamics and its interaction with
human.

H Sh

γh

β1

Ih Human

V µv
Sv

β2

µv

Iv

µv

Mosquito

Similar models are used for the transmission of Dengue, Chikungunya, Zika, ...
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Ross-Macdonald model

The modelling assumptions are :

Two populations : H (human), V (vector of the disease = mosquito).

SIS model for the disease for H and V, where we assume that the total
population of human is constant (fast dynamics of the disease) and we
neglect the recovery rate for mosquitoes (life expectancy too short compared
to the duration of the disease).

Parameters :

β1, β2 proportions of bites giving rise to an infection to human, respectively,
mosquitoes ;
γ recovery rate for human ;
µm death and birth rate for mosquitoes (assumed to be the same).
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Ross-Macdonald model

The corresponding system of ODE reads

dSh
dt

= − β1
IvSh
H

+ γIh , H = Sh + Ih ,

dIh
dt

= β1
IvSh
H
− γIh ,

dSv

dt
= − β2

IhSv

H
+ µV − µSv , V = Sv + Iv ,

dIv

dt
= β2

IhSv

H
− µIv .

It is clear that the number of human, H, and of mosquitoes, V, are constants.
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Ross-Macdonald model

We are now in position to compute the basic reproduction number for this system.

1 There are two infected states : Ih, Iv.

2 Equilibrium without infection : (Sh, Ih, Sv, Iv) = (H, 0, V, 0).
Linearization around this equilibrium for the infected states

dIh
dt

= β1 Iv − γIh,
dIv

dt
= β2

V
H

Ih − µIv.

3 Transmission and transition matrices

T =

(
0 β1

β2
V
H 0

)
Σ =

(
−γ 0
0 −µ

)
.

4 Computation of R0

TΣ−1 =

(
0 β1

µ
β2V
Hγ 0

)
.

The spectral radius for this latter matrix is then R0 =

√
β1β2V
γµH

.
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A model for dengue transmission

Finally, we consider a model for dengue transmission 13 This model is based on
the following modeling assumption :

The human population is assumed to be constant, i.e. the death rate for
human is the same as the birth rate.

Dengue is a SEI disease for mosquitoes.

Dengue is a SIR disease for human.

We use the following notations :

V, Sm, Em, Im denote the total number of mosquitoes, the number of
susceptible mosquitoes, the number of mosquitoes exposed to the disease,
the number of infected mosquitoes, respectively. We have the relation

V = Sm + Em + Im .

H, Sh, Ih, Rh denote the total number of human, the number of susceptible
human, the number of infected human, the number of recovered humand,
respectively. We have H = Sh + Ih + Rh .

13. From H. Hughes, N. F. Britton, Modelling the use of Wolbachia to control dengue fever
transmission, Bull. Math. Biol. (2013).
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A model for dengue transmission

With these considerations, the model reads

dV
dt

= bV(1− V
K
)− dV,

dEm

dt
= ap(V − Em − Im)

Ih
Nh
− eEm − dEm,

dIm

dt
= eEm − dIm,

dSh
dt

= µH − aqIm
Sh
H
− µSh,

dIh
dt

= aqIm
Sh
H
− cIh − µIh.

Parameters are

a the biting rate.
p the probability of a blood meal leading to mosquito catching dengue from
infected human.
q the probability of a blood meal leading to human catching dengue from
infected mosquito.
b, d birth and death rate for mosquitoes, respectively ; e mean incubation time.
µ birth and death rate (the same) ; c recovery time.
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A model for dengue transmission

We are now in position to compute the basic reproduction number for this system.
1 There are 3 infected states : Em, Im, Ih.
2 Equilibrium without infection : (V, Em, Im, Sh, Ih) = (K(1− d

b ), 0, 0, H, 0).
Linearization around this equilibrium for the infected states

dEm

dt
=

apK(1− d
b )

H
Ih − (e + d)Em,

dIm

dt
= eEm − dIm,

dIh
dt

= aqIm − (c + µ)Ih.

3 Transmission and transition matrices

T =

0 0 apK(1− d
b )

H
0 0 0
0 aq 0

 Σ =

−(d + e) 0 0
e −d 0
0 0 −(c + µ)

 .

4 Computation of R0 : We have

−Σ−1 =


1

d+e 0 0
e

d(d+e)
1
d 0

0 0 1
c+µ

 .
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A model for dengue transmission

Then, using the above approach, we compute

TΣ−1 =

 0 0 apK(1− d
b )

(c+µ)H
0 0 0

eaq
d(d+e)

aq
d 0

 .

The spectral radius for this latter matrix is then R0 =

√
ea2 pqK(1− d

b )

d(d + e)(c + µ)H
.
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To be continued . . .

Thank you for your attention.
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