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Outline

* Time delay models in some biological
systems and their analyses using robust
control techniques (linear and nonlinear):

— Neuromusculo-skeletal system
— Gene regulatory networks

 Conclusions
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Neuromusculo-skeletal system
(Joint work with H. Hemami)
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Neuromusculo-skeletal system

Barbara H. Connolly, “Aging in Individuals with Lifelong Disabilities”,
Physical & Occupational Therapy in Pediatrics, Vol. 21(4) 2001.

Adequate balance during stance and gait is the result of three major factors:

1. Appropriate processing of input from the visual, vestibular, and
somatosensory (primarily proprioceptive) systems that allow a person to
acquire information about the body in space.

2. Central processing or the ability for the body to determine in advance,
the correct appropriate sequence of responses.

3. Lastly, the body must be able to carry out the appropriate response via
the effector system (strength, range of motion, flexibility, and endurance).

Central processing has been shown to be affected in older adults.
Investigators have found that response times have been
iIncreased in older 79-81 adults by approximately 20 to 30 ms.
This delay in response seems to contribute to instability during
stance and ambulation in older persons who fall.
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Journal of Motor Behavior, 1993, Vol. 25, No. 3, 203-216
Is the Cerebellum a Smith Predictor?

R. C. Miall
D. J. Weir
D. M. Wolpert
J. F. Stein
Oxford University

University Laboratory of Physiology A
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FIGURE 5. Tracking responses of primates. Each graph
shows the position of a joystick (thick line) held by a monkey
trained to follow a target (thin line) displayed on a computer
screen. A. Normal responses. B. Responses when the
cursor providing visual feedback was delayed by 300 ms.
On the left is a period of slow, intermittent tracking; on the
right, the monkey has slipped into instability. (Modified

from Miall et al., 1986.)
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Equilibrium: 65 = 0, 0o = 0 (stance)
Linearization around the equilibrium:
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Simulation block diagram for stance
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Numerical Example: Iy =017 I, =05

/1 =0.401 45 =0.412
ki =021 ks =0.26

I; =21 g =981
¢3 = 0.619
ks = 0.24

Disturbance responses of the stabilized system for stance (nonlinear model)

12

%107 Disturbance response under no delay in feedback loop (pulse in link 3)

——thetal

g X 103  Disturbance response under 25ms delay in feedback loop (pulse in link 3)

——thetal

’ 1 ? timetsec) ’ é ! ’ time (sec)
T — O T — 0025
Stabilizer for stance o :
with delay in the loop: Uy = E (U — L, 0(t—7) — (K, — K) 0(t - T))
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12 x10Y/  Disturbance response (linear and nonlinear models)
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Nonlinear versus Linear Model
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Feedback mechanism for squatting maneuver

3 disturbance G (S)
O + 7, +l stabilized 6
2 i8I °s C(S) —>UC D€<3> i>G U > NL system
- for stance
D, ()]
s ! :
Ohesirea = el ] C(s) Controller (CNS)
o : 3 " De(s), Da(s) efferent and afferent delays
g ' (diagonal blocks)
gwos ..........................................
] o T 3 4 T'(s) closed loop map from Qyegeq t0 0
:f;'o_s_/ assuming nonlinear system is linearized
i 00 1 2 3 4
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Desired form of the closed loop map:  T'(s) = G4(s)Dg4(s)

Stabilizing Controllers: C<5)
(96 /_: ____________________ o Uc
! Q(S) Q<3> _ Dq<S>G_1(S>Gd(5)

on = mm mm = o e ey

D,(s)D,(s ZDdS :e_hslg 3
Da(5)<— G(S)<—De<3><— Q< ) 6( ) 1( ) X
N T S Gyls) = s £ 1) I3x3
» CNS has copies of system dynamics for \ Y J
stance and time delays.
» Mismatch happens with aging or health e_hs
problems. T<5> = (TdS n 1)213><3

» Robustness to mismatch in delays and
parameters of the system dynamics as
well as using linear model versus
nonlinear model are analyzed in the
literature (e.g Hemami and O., 2000).

(all three links are synchronized)
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efferent and afferent delays = 20ms (40ms total delay) 74 = 0.01 inall cases
controller uses correct values of the delays

Response with 74 = 0.01 total delay is 40 ms (matched delay) Response with 73 = 0.01 and 70ms delay mismatch
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e : — :
S Conclusion: additional 20ms delays in afferent and
Q 1 D .
= (I) efferent paths are OK but if these increase to 35 ms
g o5l ] the result is instability. These results depend on 7.
-1 “Response times have been increased in older 79-81
adults by approximately 20 to 30 ms. This delay in
15 . . . . . , , response seems to contribute to instability during
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Further Research Questions:

» What are the feedback gains for stance in real biological system?
How can we set-up an experiment to measure these gains?

» Can an adaptation be made with aging, e.g. adjusting the gains or
updating the system model in the controller with changing delays?

» What is the delay margin for this particular nonlinear system?
For the linearized model it is relatively easy to compute the DM.

Qdesired + 0

> Gy(s)e s >

A [

A . captures delay mismatch and other linear/nonlinear neglected dynamics
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Part
Analysis of Gene Regulatory Networks
(with M. E. Ahsen and S-I. Niculescu)

SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER
ENGINEERING - CONTROL, AUTOMATION AND ROBOTICS

Mehmet Eren.Ahsen
favuDNrhay

f\‘? ! N

SiIiu-Ii culscu
— Analysis of
Deterministic
Cyclic Gene
~ Regulatory
Network Models
with Delays

¥ Birkhauser

Hitay Ozbay September 2019



Analysis of Gene Regulatory Networks

Definition of a GRN (Wikipedia): A gene regulatory network or genetic regulatory
network (GRN) is a collection of DNA segments in a cell which interact with each other
indirectly (through their RNA and protein expression products) and with other substances in
the cell, thereby governing the expression levels of mMRNA and proteins.

Mathematical Models of GRNSs

LIFE
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Coupled ODEs

Guy Karlebach and Ron Shamir,
“Modelling and analysis of gene regulatory networks”
Nature Reviews Molecular Cell Biology, 9, 770-780 (October 2008)

a b
d(gene)) 1 L Gene 1
dt " 1+k;.gene, §ene 0
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d(gene k,,-gene L
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Simplified Model with Time Delay

N
Y1} () = —Awi(t) + gi(w2(t))
Yot 22(t) = —Awa(t) + ga(z3(?)) Ly
Yin} Tn(t) = _)‘nxn(t)+gn(x1(t_7_))J
d(gene)) 1
dt :k“'1+/<1,3-geﬂ€’3 k‘d . To . T1
-é
digene,)  ky,-gene .
dt > 1+k, gene, 2'd <

d(gene,) ks ,geﬂ ks, - gene,
dt k's. (1+ky, - gs% 1+l<32 . gene,) k3d
delay

System Theoretic Questions:
1. How many equilibrium points do we have?
2. Are these stable equilibrium points?
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Definitions

fm :\f 0:-+0 f] Fixed point: f(x) =«
Y
™ compositions

First, second and third derivatives: f’, f”, f"

Three times differentiable functions on positive real axis: D* (R )

Schwarzian derivative:

—00 if f'(x) =0
Sf) =1 @) _3 (@Y L
75 3 Ures) fre) =0
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Assumptions on X

Assumption 1 For all e =1,2,...,n, we have \; > 0.

Assumption 2 For all = 1,2,...,n, the nonlinearity functions g; satisfy:

(i) g;(x) is a bounded function defined on R, ;
(ii) we have either g;(x) < 0 or g;(x) > 0 Vx € (0, 0).
(iii) Each function g; has Sg;(x) < 0 Vz € (0,00).

Definition:
The gene regulatory network is under negative (resp. positive) feedback if

gd(x)<0  Vze(0,0)
respectively

g(x)>0  Vze (0,0)
where

1 1 1
g = <>\_191) 0o ()\_292) 0...0 (Egn)

Hitay Ozbay September 2019
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GRNSs under Negative Feedback

\

&.
|_\
VN

~
N——"

= X () +01(wa (1))
() = —hn)+nln) | gy

Tn(t) = —An@n(t) + gn(z1(t — 7_));
Let §4,..., g, satisfy Assumption 2 and consider the system under
negative feedback, i.e.,
1 1 1 ,
g = (—gl)o(—g2)o...0(—gn) g (:E) < 0Vzx e (0,00)
A1 A9 An

In this case, g has a unique fixed point and hence
> has a unique equilibrium point ; T¢q = (21, ..., Tp).

For the system X, R} is a positively invariant set.
Moreover, z(t) remains bounded for any z(0) € R”.
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Global Stability Results (Delay Independent and Delay Dependent):

The system has a unique equilibrium point given by x., = [z1, ..., z,]",

where x1 is the unique fixed point of the function g. Moreover, if
9" (z1)] < 1,
then for any nonnegative initial condition the solution satisfies

tliglo T(t) = Teq.

If we have
g (x1)] > 1, (%)

then stability of the equilibrium point depends on the value of the time delay.
Even if the equilibrium is locally unstable, the solution z(t¢) is bounded: under(*)
the function g o g has exactly three distinct fixed points

<z <Ya.

Then, for any positive initial condition, we have

< tlim xi(t) < lim x;(t) < o Vi=1,2,...,n.
— 00

t—o00
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Homogenous GRNs Under Negative Feedback

{ t;(t) = —x;(t) + f(xir1(t)) 1=1,2,....n—1

Tn(t) = —an(t)+ fl@(t—7))

= b>0 ci{l, 2. 3,... L
b"‘,fljm’ a’? 9 m {7 9 9 }

Since ¢ = f™ and

f(z) <0, Vz € (0, 00).

the system is under negative feedback if and only if n is odd.
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f has unique fixed point satisfying

a

f(zo) = b+ = g

9'(xo) <1 < (f'(@))" <1l < < Zg

<—

If this condition is satisfied the equilibrium point T, = [xg -+ .CE()]T
is globally stable independent of delay.
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2

Homogenous GRN with a =2, b=0.25, m =3, n=3 f(x) = 0.25 + 23
: x

a N\ m b m-+1
(—) — 0.2963 > (—) — 0.00024
m m — 1

g = fof hasthree fixed points :

0.0039, 1.1442 and 8.0000 (s

R S
\ IO I A

Stays within these bounds < %_ a5l . ............... .............. ....................... - .......... ..........

i i i \ i i i
\ 0 5 10 15 20 25 30 35 40
Time (B
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2
Homogenous GRN with a =2, b=2, m=2,n=3 f(z)= )
T

b m-+1

(ﬁ)m 1 (2 _ g Zeq = (0.7709,0.7709,0.7709).
m m — 1

3
3 —x, ‘
) 1 —
i (D) X0
v . R
2504 : ‘ -l |
0 i 0 L
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Time () Time (t)

1 L 1 1 i | i 1 L
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Delay dependent local stability condition for the case |g’(x1)| > 1

U S S p———

[ {'sys, I s S i) | ;
Repression ySn yS"'l YSI —‘ H-l(lt)! gi(') i([) ‘Flz(s) 1 r(’)
Activation \ m— : :
Activation u !\ lth SUbSyStem :
o O delay N SmseesSaessiowesl o :
Linearization around an equilibrium point * = [331 a:n]T
2(t) = Aoz(t) + Ar2(t — 7)
AL gi(@) O 0 ] : :
0 0 0
0 —)\2 gé(ﬂfg) 0 .
AO — °. ) ) s A]_ = :
' 0 0 0
0 0 A1 Gn_1(Tn) g (x1) 0 0
0 0 0 ~An L OmEE -
pi = gi(xir1), i =1,...,n, with z,11 = x1.
‘ Hitay Ozbay September 2019 27 ‘



The Secant Condition for Time Delay Systems

Linearized system model for the GRN:

2i(t) = =i 2i(8) + pi zig1(t) t=1,...,n
with delayed feedback 2p11(t) = 2z1(t — 7)

Characteristic equation:

X(s) := ﬁ (

S _ - Pi
— 4+ 1 TS — where k= — >0
[1 )\.—I—)—I—ke 0 EM>

In fact, £ = ¢'(x1)

A sufficient condition for stability from the small gain theorem: k£ < 1

Another simple sufficient condition will be given for the case where &k > 1
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The secant condition when 7 = 0 (a sufficient condition for stability) :

T\ " T
k < (sec ﬁ) equivalently ” > arccos ( v/ 1/ k)
When delay is non-zero we need an extra small-delay condition: 7 < maX{Tm, 7N'm}
where T — N arccos ( L 1/k>
T. =
" A Vk2/m —1

T — M arccos ( \”/1/16)
T = ,

N X2 -1

A= max; )\z and X = (H?:l )\z)l/n

When all \; are equal (homogenous case) we have T,, > T,
and a necessary and sufficient condition for local stability is

T mn
k< (sec —) and T < T
n
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Example: Repressilator is a special kind of homogenous GRN withn = 3

~ Sys, = SyS, Sys,
= |
J
delay
87

Maximum allowable time
delay for local stability :

U U AU MRS ———

s+ 1)(s/B+1)

 — 00 corresponds to the case we have considered

10° ¢

——m=4, 3=1
—m=3, =1
—_—m=2, 3=1
—m=2 =10
---m=2, 3=0.1
—m=2, 3=100 |-
- ==-m=2, 3=0.01|]

—m=2, — o |]

107" ¢ . : / _
10-2 A il it R S S B .
0 1 2 3
10 10 o 10 10
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Conclusions
« Many biological system models involve time delays.

« Effects of time delays are analyzed and delay margins
are determined for linearized models around the
equilibrium.

« Experimental validation and parameter estimation for
these models are important missing links at this point.
Strong multidisciplinary collaborations are needed with
experts from biology and medicine.
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