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Forewords

The question of assessing Darwin’s explanation of evolution ([42]) by mean of mathematical

modeling is certainly challenging. It is indeed based on very few and simple principles: food

limited growth, natural selection and ’variations’ or ’mutations’ from mothers to off-springs.

This is certainly the reason why several mathematical approaches have been proposed. Game

theory and optimal strategies were introduced by John Maynard Smith [77] and mathematical

developments can be found in the books of J. Hofbauer and K. Zygmund [65, 66]. This approach

is based on population dynamics and can be derived from individual based stochastic models in

the limit of large populations (see [45, 35, 33, 34] and the references therein). The analysis can

also be made through a particular stability analysis of steady states in dynamical systems and

was developed for several biologically relevant examples by [58, 59, 78, 46].

The populational point of view still uses a different aproach based on an intrinsic modeling

of all the processes at the population level and was initiated in [30, 29, 25]. It leads us to con-

sider integral and parabolic partial differential equations of Lotka-Volterra type as it is usually

done in population biology ([86, 88, 79, 102]) but the nonlocal aspect is here fundamental for

the solution behaviour. An important ingredient is that mutations should be rare or lead to

small variations, therefore a small parameter should be present. A possible rescaling was first

introduced in [47], leading to for a new qualitative analysis : solutions concentrate as moving

Dirac masses. To tackle the asymptotic analysis, the idea was introduced of using a Hopf-Cole

transform and leads to a new system of PDEs: constrained Hamilton-Jacobi equations. There-

fore the approach presented here relies on asymptotic analysis of PDEs. In this framework it

presents how one can interpret both the natural selection and mutations.

For mathematics, the main target in this asymptotic populational approach is to understand

the concentration phenomena to Dirac masses. The monomorphism situation, that is a single

Dirac mass, is well understood and a form of canonical equation can be established in smooth-

ness regimes. Our understanding of polymorphic cases is much lower, a weak limit is proved in

[36] for the chemostat but a classical theory is not available in opposition to the monomorphic
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case [74]. In particular the branching from a monomorphic to a dimorphic solution requires to

solve the so-called ’tail problem’ that is too small populations should not survive [12, 68] to

arrive to smooth branching. This question also opens the question of other possible rescalings

as performed by the probabilistic school departing from a stochastic description of finite popu-

lations.

Other issues are also little touched in this approach: fluctuations in the environmental vari-

ables, evolution in systems of interacting species as cooperative systems and the various possible

stregth of intercations. On the application side several topics are arising from present develop-

ments in biology; a typical question is to model epigenetic mutations, an emerging topic is the

understanding of resistance to therapy, in particular in cancer treatment, by principles based on

adaptation or mutations of tumor cells [53, 103, 73].

These notes are a compilation of several papers and book chapters already published indepen-

dently. They have been slightly modified in order to be self contained with unified notations.

But the original and main content is completely taken from [47, 90, 9, 10, 55]. They have been

put together as a support for the CRM Advanced Course in Mathematical Biology held during

the first semester 2009. I would like to thank the CRM and the organizing committee for this

opportunity to give the course and to put together these notes.

Belle-Ile en Mer

July 2008
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Notations

• x− = max(0,−x) is the negative part of x. Therefore x = x+ − x− and |x| = x+ + x−.

In the same way x− = −sgn−(x) x and sgn−(x) ≥ 0.

• The space of continuous functions is denoted by C0, the space of differentiable functions

with continuous derivative is denoted by C1...

• The space of continuous functions on Rd vanishing at infinity is denoted C0(Rd).

• Measures on Rd are seen as the dual space of C0(Rd). Integration of C0 functions against

a measure µ is denoted as that of L1 functions by
∫
Rd ϕ(x)µ(x)dx.

• Also µn ⇀
n→∞

µ means that
∫
Rd ϕ(x)µn(x)dx →

∫
Rd ϕ(x)µ(x)dx, as n → ∞, for all func-

tions ϕ ∈ C0(Rd).

• Dirac masses at a point a are denoted as δa(x) = δ(x− a) = δ(x = a).

• The Sobolev space W 2,∞(Rd) is the space of C1 functions which are bounded, with a bounded

and Lipschitz continuous derivative.
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Chapter 1

Phenotypically structured

population

Population biology always faces a fundamental difficulty, the heterogeneity of populations. All

individuals do not respond to their environment with exactly the same laws. In order to take

into account this fact, population models can be structured by a parameter (always denoted by

x below). The theory of structured population dynamics deals with the related questions and

is now well established [79, 41, 102, 90]. The most classical examples of structuring parameters

are the size of individuals, their age. These evolve during the life of individuals and are not

under consideration in these notes.

Phenotypical parameters represent traits that individuals inherit from their parents and re-

fer to their value for adults. They are considered here as much as they describe the ability of

the adult individuals to use the environment (resources) for their reproduction. This Chapter

presents examples of phenotypically structured populations. The most important other ingredi-

ent in the theory, namely mutation is also presented later in this chapter.

Various effects have been studied based on the emergence of a fittest trait in a structured

population. We give here several example which are all described by the general formalism

∂

∂t
n(t, x) = n(t, x) R

(
x, [n(t, ·)], I1(t), ..., IK(t)

)
(1.1)

with the Ij ’s are unknowns which describe the environment (nutrients for instance) and which

can be also solution of differential equations. Roughly n(t, x) denotes the density of individuals

with trait x andR(. . .) represents the growth (and death) rates.The growth rateR
(
x, [n(t, ·)], I1(t), ..., IK(t)

)
also depends generally on the full poupaltion whatever is the trait x because everybody is in



competition for the nutrients. This is the meaning of the notation [n(t, ·)]. The rate R
(
x, ...) is

usually called the fitness of individuals with trait x in the environment I1(t), ..., IK(t).

1.1 Distributed growth and mortality rates

The formalism covers several examples, the simplest general subclass being as follows
∂
∂tn(t, x) = n(t, x) R

(
x, I1(t), ..., IK(t)

)
, x ∈ Rd, t ≥ 0,

Ik(t) =
∫
ψk(x)n(t, x)dx.

(1.2)

A family of models, see [1, 90], is based on growth and death rates depending on a parameter

x ∈ Rd (that decribes resources allocation for instance). The model under consideration is then

defined by

R(x, I) = b(x)Q1(%(t))− d(x)Q2(%(t)), %(t) =

∫
n(t, x)dx, (1.3)

with Qi ∈ C1(R) for i = 1, 2, and

Q′1(·) < 0, Q′2(·) > 0, Qi > 0. (1.4)

b ≥ bm > 0, d ≥ dm > 0 and b, d ∈ L∞(Rd). (1.5)

With these assumptions, the long time behavior of such equations is studied in Section 2.1.

Resistance to chemotherapy is an example which is closely related, [73, 81, 95]. The trait x

represents the level of resistance to drugs and the fitness is defined as

R(x, I) =
b(x)

1 + cS(t)
− c(x)%(t)− d(x)(1 + cT (t)),

where cS and cT represent the concentrations of cytostatic and cytotoxic drugs and c(x) the

competition between cells (for space or oxygen).

1.2 Cannibalism

See [46, 90]. Here, the trait x ≥ 0 under consideration is the degree of cannibalism, and 0 < α ≤ 1

denotes the efficiency in offspring production from intraspecific predation, also called rendering

factor. To begin with, consider two species with population density n1(t) and n2(t) and with

different levels of cannibalism x1 and x2. We write the differential system

d

dt
n1(t) =

(
r + αx1n2(t)− x2n2(t)

)
n1(t),
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d

dt
n2(t) =

(
r + αx2n1(t)− x1n1(t)

)
n2(t).

For the equation on n1, the parameter r represents the growth rate in the absence of cannibalism

(and we have substracted the death rate to simplify). The term αx1n2 is the growth rate induced

from predation on n2 and −x2n2 the death rate from predation by species n2.

And one can see that cannibalism acts as a negative feedback. The global growth rate of the

population is indeed lower than the logistic rate r (eventhough the more cannibalistic individuals

perform better and thus there is a selective advantage to be more cannibalistic) since

d

dt

∫ ∞
0

n(t, x) =

∫ ∞
0

n(t, x)
[
r − (1− α)

∫ ∞
0

x n(t, x)
]
≤ r

∫ ∞
0

n(t, x). (1.6)

Rather than two values of x, consider that the predation parameter x is continous, we write

∂

∂t
n(x, t) =

(
r + αx

∫ ∞
0

n(y, t)dy −
∫ ∞

0
yn(y, t)dy

)
n(t, x).

Therefore, we recover the general equation (1.2) with the growth rate

R(x, I1, I2) = r + α x

∫ ∞
0

n(y, t)dy −
∫ ∞

0
yn(y, t)dy. (1.7)

Here two global environmental quantities arise that represent respectively the total population

and the total cannibalistic behavior,

I1(t) =

∫ ∞
0

n(y, t)dy, I2(t) =

∫ ∞
0

yn(y, t)dy.

For results concerning the long time behavior, and in particular extinction, we refer to [90].

1.3 Adults, juveniles

See [26, 25, 27, 32]. Systems of equations may also arise. This is the case for a population

distributed into two groups of age introduced in [27]. Let n(t, x) and p(t, x) denote the density of

young and adult individuals (respectively) with respect to the phenotypic trait x = 1
T ∈ (0,∞)

where T is the expected duration of the juvenile state. As in [26, 27] we assume that the

maturation age is an exponentially distributed random variable so that the per capita transition

rate from juveniles with trait x to adults is exactly x. As long as birth occurs from adults with

the same trait as the newborn (with a rate b(x)), we obtain a structured population model
∂
∂tn(t, x) = b(x)p(t, x)−m1(S1(t))n(t, x)− xn(t, x),

∂
∂tp(t, x) = xn(t, x)−m2(S2(t))p(t, x),

(1.8)
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with 
S1(t) =

∫ ∞
0

[
ω11(x)n(t, x) + ω12(x) p(t, x)

]
dx,

S2(t) =

∫ ∞
0

[
ω21(x)n(t, x) + ω22(x) p(t, x)

]
dx.

(1.9)

Here we have followed again [26, 27] to include nonlinear mortality rates m1, m2 that are known

to control the total population.

1.4 Chemostat

One of the most classical model from ecology arises in laboratory experiments. A chemostat

contains nutrients Sk, k = 1, 2 . . . , I, and micro-organisms (the example of Daphnia is frequent)

which uses the nutrients to grow. The modeling is particularly simple because Sk(t) can measure

the mass of chemical constituents that are either free in the chemostat or absorbed by the micro-

organisms with density by n(t, x) which is structured for instance by their size x. Therefore we

can write an exact balance equation
d
dtSk(t) = R[S0k − Sk(t)]− Sk(t)

∫
ψk(x)n(t, x)dx,

d
dtn(t, x) = n(t, x)

(
I∑

k=1

Sk(t)ηk(x)−R

)
.

(1.10)

Here the vector with positive coefficients (S0k)k=1,...,I represents the inflow of ’pure’ nutrients

and the terms −RSk(t) and −Rn(t, x) represent the outflow of the mixture with rate R > 0.

The quadratic term, as usual, represents the uptake, with rate ψk(x) > 0, of the constituent Sk,

and itis restitution rate ηk. As we can see, the only effect of the variable x is on the uptake and

restitution coefficients. It is usual to use ψk = ηk, at least they are naturally strongly related.

When ψk = ηk, this system contains a fundamental balance law for the total biomass M(t) of

constituents (free or absorbed) defined by

M(t) =
I∑

k=1

Sk(t) +

∫
n(t, x)dx,

d

dt
M(t) = R

( I∑
k=1

S0k −M(t)
)
, ∀t ≥ 0. (1.11)

The long time behavior of this type of systems has attracted much attention and is not entirely

known. See [100, 65, 66, 90].
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To fit the general equations we deal with, it is better to consider that the time scale for

nutrients is much faster than that for the population n(t, x). This means that the terms d
dtSk

are neglected. In physics this is called the ’adiabatic’ assumption. Then we arrive to
Sk(t) =

RS0k

R+
∫
ψk(x)n(t, x)dx

,

d
dtn(t, x) = n(t, x)

(
I∑

k=1

Sk(t)ηk(x)−R

)
.

(1.12)

With the notation Ik = 1/Sk, this falls obviously in the general case of system (1.1).

1.5 Intra-specific local competition

See [78, 57, 56, 55]. Several models in evolution biology suppose that the competition is higher

between individuals of closer traits because they they feed on the same preys, see [54]. The

simpler examples of equations that arise in this context use quadratic death rates given by an

integral kernel C(x, y),

∂

∂t
n(t, x) = n(t, x)

(
S(x)−

∫
C(x, y)n(t, y)dy

)
, (1.13)

with S(x) ≥ the net growth rate and C(·) the competition kernel.

This type of modelling is rather general. For instance it contains a limiting case of the

chemostat. We follow P.E. Jabin (adiabatic assumption and linearization )

Sk(t) ≈ S0k

(
1−

∫
ψ(y)n(t, y)dy

)
.

Then the fitness in the chemostat model (1.10) becomes

R =

I∑
k=1

A particular case is related to the non-local Fisher equation and is written

∂

∂t
n(t, x) = n(t, x)

(
1−

∫
K(x− y)n(t, y)dy

)
.

The typical example is a convolution
(
K ∗ n(t, .)

)
(x) =

∫
K(x − y)n(t, y)dy which shows the

difficulties of this problem.

There might be smooth steady states (example of the gaussians) and Dirac mass steady states.
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1.6 Chemostat with continuous nutrients distribution

In nature, it is more often observed indirect competition. The different individuals compete

for a common resource. We can imagine the situation of girafs which can reach leaves (which

mathematical description gives a repartition structured by their height y) as long as they are

lower than their size (the other structuring parameter).

Modeling this type of situation leads to extend the chemostat to a continuous resource
∂
∂tS(t, y) = Sinput(y)−RS(t, y)− S(t, y)

∫
η(x)K(x− y)n(t, x)dx,

∂
∂tn(t, x) = n(t, x)

(
−R+ η(x)

∫
K(x− y)S(t, y)

)
,

(1.14)

where, to simplify the mathematical setting, we have used x, y ∈ R. The food input Sinput(y)

is a given function as well as th euptake function η(x).

Again the basic property of this model is a balance law

d

dt

[∫
S(t, y)dy +

∫
n(t, x)dx

]
= R

[∫
Sinput(y)dy −

∫
n(t, x)dx

]
.

1.7 Mating and sexual reproduction

We take the model from [44, 49]. Given gaussian like distributions A(y, z) (probability of

mating between individuals of trait y and z, B
(
x− y+z

2

)
is the repartition of traits after mating

individuals of traits y and z. The total amount of mating that phenotype y participates in is

given by

N(y) =

∫
A(y, z)n(z)dz.

Then, the probability distribution of offspring with phenotype x produced by phenotype y is

1

N(y)

∫
A(y, z)B

(
x− y + z

2

)
n(z)dz

Finally the total density of offsprings at phenotype x resulting from all possible matings is given

by

β(x) =

∫ [
1

N(y)

∫
A(y, z)B

(
x− y + z

2

)
n(z)dz

]
n(y)dy

Denoting by r(x) is the basic reproduction rate, this motivates the dynamics of phenotype

distributions in sexual populations given by the equation

∂

∂t
n(t, x) = r(x)β(x)− r(x)

K(x)
n(t, x)K ∗ n(t).

Because new traits are generated through mating, this equation does not enter in the general

structure (1.1).
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1.8 Multispecies models

In [96], the authors treat of the multispecies problem{
∂ni(t,x)
∂t =

(
ri(x)− di(x)

∑N
j=1 aij%j(t)

)
ni(t, x), i = 1, ..., N,

%i(t) =
∫
ni(t, x)dx.

As in usual ecology problem, see [91] for instance, the matrix aij describes the type of interactions

between the species.
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Chapter 2

Selection only: long time behavior

The immediate consequence of the formalism is natural selection. If the resources are limited,

this induces that the fittest individuals take over the rest of the population which is lead to

extinction by lack of resources. This phenomena is also called competitive exclusion principle.

The competitive exclusion principle, first formulated by Gause1 refers to the observation that

two species competing for the same resource cannot coexist (in a stable way). The paradox of

the plankton gives an example where this rule seems to be violated; a wide variety of plankton

species use only light and minerals as nutrients.

A further consequence, when a single resource is used is mutual exclusion. This refers to the

situation when there is a unique trait represented, i.e. a single Dirac mass in the limit in the

formalism of this Chapter.

We base our analysis on [1, 90, 10, 43, 69].

2.1 Single environment: the competitive exclusion principle

The simplest model (a single population density and a single environmental variable) can be

studied under fairly general assumpetions. The simplest model under consideration here is
∂
∂tn(t, x) = n(t, x) R

(
x, I(t)

)
, x ∈ Rd, t ≥ 0,

n(t = 0) = n0 ∈ L1(Rd), n0 ≥ 0,

(2.1)

I(t) =

∫
Rd
n(t, x)dx. (2.2)

We have decided to state the problem in Rd for later purposes but it would me more natural at

this stage to use a bounded subset and, more generally, only a measurable space.

1Gause, G. F. (1934) The struggle for existence. Baltimore, MD: Williams and Wilkins



Our purpose is to show that, under various assumptions on the growth rate R(x, I), the

population n concentrates as a Dirac mass (or a sum of Dirac masses) in long times, i.e., t→∞,

a mathematical way to express that a well identified species emerge from the adaptive landscape

defined by the rate R. This is the natural selection occuring in such models.

The quantity R(x, I) is sometimes called the invasion exponent because it describes the ability

of the individuals of trait x to invade the population with environmental state I. It is negative

for certain traits and positive for others.

We assume that R(x, I) is C1 and that there are constants 0 < Im < IM <∞ and 0 < R <∞
such that

min
x∈Rd

R(x, Im) = 0, max
x∈Rd

R(x, IM ) = 0, (2.3)

max
x∈Rd

R(x, I) ≤ R, ∀I ∈ [Im, IM ], (2.4)

and that there is a constant K− > 0 such that,

∂R

∂I
(x, I) < −K− < 0, ∀x ∈ Rd, I ∈ [Im, IM ]. (2.5)

These mean that in the environmental conditions Im < I < IM some traits decay but not all,

and that the environmental conditions I > IM are so defavorable that the whole population

decreases whatever the trait.

We will also use the assumption

n0 ∈ L1 ∩ L∞(Rd) and Im ≤
∫
Rd
n0(x)dx ≤ IM . (2.6)

We do not prove existence of solutions which follows from usual Cauchy-Lipschiz theory and

yields

Theorem 2.1 With the assumptions (2.3), (2.4) and (2.6), there is a unique solution n ∈
C
(
R+;L1(Rd)

)
, n ≥ 0, to equation (2.1)–(2.2), and it satisfies,

Im ≤ I(t) ≤ IM , ∀t ≥ 0. (2.7)∫ T

0

∫
Rd
R−
(
x, I(t)

)
n(t, x)dx dt < I0 +R IM T. (2.8)

Here, we just indicate the derivation of the upper bound in (2.7). We first have from equation

(2.1)
d

dt

∫
Rd
n(t, x) dx =

∫
Rd
n(t, x)R

(
x, I(t)

)
dx ≤

∫
Rd
n(t, x)dx max

x∈Rd
R
(
x, I(t)

)
,
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and thus
dI(t)

dt
≤ R I(t).

This proves that I(t), i.e., the L1 norm of n remains bounded in finite time. But it also proves

that if I(t) reaches IM , then dI(t)
dt ≤ 0 which means that I(t) ≤ IM for all times.

Next, we have
dI(t)

dt
dx ≥

∫
Rd
n(t, x)dx min

x∈Rd
R
(
x, I(t)

)
,

and, as before this proves that I(t) ≥ Im.

Finally, we have, by integration in time and x of equation (2.1)∫
Rd

[n(T, x)− n0(x)]dx =

∫ T

0

∫
Rd
R+

(
x, I(t)

)
n(t, x)dx dt−

∫ T

0

∫
Rd
R−
(
x, I(t)

)
n(t, x)dx dt,

from which we deduce∫ T

0

∫
Rd
R−
(
x, I(t)

)
n(t, x)dx dt ≤ RTIM +

∫
Rd
n0(x)dx.

Better results with weaker assumptions can be found in [43], and statements in the space of

measures can be found in [1].

There are many singular steady states to equation (2.1)–(2.2). For Im ≤ I ≤ IM we can

choose the Dirac measures

n̄(x) = I(y)δ
(
x− y

)
, R

(
y, I(y)

)
= 0.

Among them, only one is attained for positive initial data, because we have

Theorem 2.2 (Competitive exclusion principle) We assume (2.3)–(2.5) and that n0 > 0. Then,

the solution to equation (2.1)–(2.2) satisfies,

I(t) −→
t→∞

IM . (2.9)

Furthermore, if there is a unique x̄ ∈ Rd such that

R
(
x̄, IM

)
= max

x∈Rd
R
(
x, IM

)
= 0,

and for some A > 0, sup|x|≥AR(x, IM ) < 0, then we have

n(t, x) ⇀
t→∞

IMδ(x = x̄). (2.10)
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One sometimes refers to the pessimization principle ( [87]) to express that the final population

has used the environment in such a way that no possible growth is ever possible

R
(
x̄, IM

)
= 0.

This result was first proved in [1]. The proof we give here is based on different arguments due

to [90, 10]. Before proving it, we need another fundamental estimate, namely a BV estimate

that we prove first.

Theorem 2.3 With the assumptions (2.3)–(2.5), the solutions to equation (2.1) also satisfy the

uniform L∞ bound (2.7), the BV and sub-Lipschitz bounds

dI(t)

dt
≥ −e−K−Imt

(∫
n0(x)R

(
x, I0

)
dx

)
−
,

∫ ∞
0

∣∣dI(t)

dt

∣∣ dt ≤ IM +
2

K−Im

(∫
n0(x)R

(
x, I0

)
dx

)
−∫ ∞

0

∫
n(t, x)R

(
x, I(t)

)2
dx <∞.

Proof. We first integrate the equation (2.1) over Rd, this yields

d

dt
I(t) = J (t), (2.11)

with J (t) defined by

J (t) =

∫
n(t, x) R

(
x, I(t)

)
dx.

The result relies on an estimate on J (t). In the same way as before, we have

d

dt
J (t) =

∫
n(t, x)R

(
x, I(t)

)2
dx+

∫
n(t, x)

∂

∂I
R
(
x, I(t)

)
dx

dI(t)

dt
. (2.12)

Now we use (2.11) to replace d
dtI(t) by J (t) in the last term. Therefore,

d

dt
J (t) =

∫
n(t, x)R

(
x, I(t)

)2
dx+

∫
n(t, x)

∂

∂I
R
(
x, I(t)

)
dx J (t). (2.13)

But we have, using (2.5),∫
n(t, x)

∂

∂I
R
(
x, I(t)

)
dx ≤ −K−

∫
n(t, x) ≤ −K− Im < 0.

We multiply equation (2.13) by −sgn−J (t)(≤ 0) and we obtain

d

dt

(
J (t)

)
− ≤ −K− Im

(
J (t)

)
−.
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From this differential inequality, we deduce the announced sub-lipschitz inequality(
J (t)

)
− ≤

(
J (0)

)
− e
−K− Im t. (2.14)

Additionally, this already proves a BV bound on
(
J (t)

)
− since

∫ ∞
0

(
J (t)

)
−dt ≤

(
J (0)

)
−

K− Im
. (2.15)

In order to conclude the TV bound, we ague as follows. We have from (2.11)∫ T

0
J (t)dt = I(T )− I(0) ≤ IM . (2.16)

Therefore ∫ T

0

(
J (t)

)
+
dt ≤ IM +

∫ T

0

(
J (t)

)
−dt,

and the BV bound follows.

The last statement is a consequence of (2.12) once we know that I is TV and dT
dt is integrable.

Proof of Theorem 2.2. We can now conclude the derivation of the long time behavior of

n(t, x) in equation (2.1).

1st step. Limit of I(t). From the BV bound in Theorem 2.3, we deduce that there is a limit

I(t) −→
t→∞

I.

2nd step. I = IM . Suppose by contradiction that maxx∈Rd R(x, I) := 2M > 0. Then, for ε > 0

small enough, there is a ball Bε where R(x, I − ε) ≥ M . From the first step, there is Tε such

that I(t) ≥ I − ε for t ≥ Tε. This gives, solving equation (2.1) explicitly for t > Tε,

n(t, x) = n(Tε, x) exp

(∫ t

Tε

R
(
x, I(s)

)
ds

)
≥ n(Tε, x) exp

(
(t− Tε)M

)
, ∀x ∈ Bε.

As t→∞ this proves that n(t, x)→∞ on Bε and this is a contradiction with the boundness of

I(t). Therefore maxx∈Rd R(x, I) = 0 and by the strict monotonocity of R(x, I) in I, this proves

that I = IM .

3rd step. Limit of n(t). Equi-integrability. Because n(t) is a bounded measure, we can extact a

subsequence n(tk) such that n(t) ⇀
t→∞

n̄, a bounded nonnegative measure with total mass less
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than IM . Our first purpose is to prove that
∫
Rd n̄(x)dx = IM (we denote the integration of

measures with dx as for functions). This follows from the assumption (2.5) because for T large

enough

sup
t≥T, |x|≥A

R
(
x, I(t)

)
< 0.

This implies that for all ε > 0, we may find Aε > A such that

sup
t≥T

∫
|x|≥Aε

n(t, x)dx ≤ ε,

and thus that for all ε > 0,∫
n̄(x)dx ≥ lim

k→∞

∫
|x|≤Aε

n(tk, x)dx ≥ IM − ε.

This proves our claim for the total mass of n̄.

4th step. Identifying the measure n̄. It also follows from the explicit formula for n(t, x) in step

2, that n̄ can only be supported by points where R(x, IM ) vanishes and thus, with our strong

assumption that its support is reduced to x̄ thus proving our last claim.

One can also give a more quantitative estimate on the convergence rate. To do that, we use

again the equality (2.13) and assumption (2.5) to arrive, for S > T > 0, at∫ S

T

∫
Rd
n(t, x)R

(
x, I(t)

)2
dxdt ≤ J (S)− J (T ) +K+IM

∫ S

T

(
J (t)

)
+
dt.

Because J (t) is integrable, there is a sequence Sn → ∞ such that J (Sn) → 0. Choosing this

sequence in the above inequality and passing to the limit we obtain∫∞
T

∫
n(t, x)R

(
x, I(t)

)2
dxdt ≤ −J (T ) +K+IM

∫∞
T

(
J (t)

)
+
dt

≤
(
J (0)

)
− e
−K− Im T + IM

∫∞
T

(
J (t)

)
+
dt

−→ 0, as t→∞

thanks to the estimate (2.14).

2.2 Rate of convergence: an explicit computation

We wish to precise the convergence rate and thus consider a simple variant of Verhulst’s logistic

equation which we structure with a trait x ∈ [xm, xM ]
∂
∂tn(t, x) = b(x)n(t, x)− %(t)n(t, x),

%(t) =
∫ xM
xm

n(t, x)dx,

n(t = 0) = n0(x) > 0 for x ∈ [xm, xM ].

(2.17)
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Also to make things very clear, we assume

n0 ∈ C2([xm, xM ]), n0′′(0) 6= 0, n0 > 0, (2.18)

b ∈ C2([xm, xM ]), b̄ := b(0) > 0, B := b′′(0) < 0, b(x) < b̄ ∀x 6= 0. (2.19)

In this situation we know the fittest trait x̄ = 0 (highest reproduction rate here) is selected

%(t)→ b̄, n(t, x) ⇀ b̄ δ(x) as t→∞. (2.20)

We wish to go further and describe the measure through a ’potential’ ϕ defined by

n(t, x) = eϕ(t,x).

We expect a description of n(t) analogous to the convergence of gaussians
√
t√

2π
e−t

|x|2
2T towards

the Dirac mass. We expect that ϕ(t, x) ≈ −t |x|
2

2T + 1
2 ln

(
t

2πT

)
near x = 0 (for some T ) but

far away there is no reason to think that this quadratic shape is appropriate. Anyhow, the

knowledge near x = 0 describes accurately the concentration of the measure (what proportion

of mass stays in a given neighborhood of 0).

The equation on ϕ is simple
∂

∂t
ϕ(t, x) = b(x)− %(t), (2.21)

and we can prove from it that

Theorem 2.4 Assume (2.18), (2.19). Then, the solution to (2.17) satisfies

ϕ(t, x) = −[b(0)− b(x)]t+
1

2
ln(t)− ln

(√
2πB

n0(0)

b(0)

)
+O(

1

t
). (2.22)

As a consequence, we deduce the expected expansion near 0

ϕ(t, x) ≈ −B |x|
2

2
t+

1

2
ln(t)− ln

(√
2πB

n0(0)

b(0)

)
.

Proof. The proof relies on an explicit computation which allows us to compute the convergence

rate of %(t) to b(0). We integrate equation (2.17) and find successively

n(t, x) = n0(x)eb(x)t−
∫ t
0 %(s)ds, %(t)e

∫ t
0 %(s)ds =

∫ xM

xm

n0(x)eb(x)t,

d

dt
e
∫ t
0 %(s)ds = %(t)e

∫ t
0 %(s)ds =

∫ xM

xm

n0(x)eb(x)tdx,
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e
∫ t
0 %(s)ds =

∫ xM

xm

n0(x)

b(x)
eb(x)tdx+K, K = 1−

∫ xM

xm

n0(x)

b(x)
dx.

Therefore we conclude ∫ t

0
%(s)ds = ln

(∫ xM

xm

n0(x)

b(x)
eb(x)tdx+K

)
, (2.23)

%(t) =

∫ xM

xm

n0(x)eb(x)tdx/[

∫ xM

xm

n0(x)

b(x)
eb(x)tdx+K], (2.24)

and we notice that the constant K may be negative but the denominator is larger than 1.

These formula are based on Laplace integrals and we recall that , with B = b′′(0),∫ xM

xm

f(x)eb(x)tdx =

√
2πB

t
eb(0)t

[
f(0) +

f ′′(0)

2Bt
+ o(

1

t
)
]
.

Therefore, from equation (2.23),

∫ t
0 [%(s)− b̄]ds = ln

(√
2πB
t eb(0)t

[n0(0)
b(0) + (n0/b)′′(0)

2Bt + o(1
t )
]

+K

)
− b(0)t

= −1
2 ln(t) + ln

(√
2πB

[n0(0)
b(0) +O(1

t )
])

= −1
2 ln(t) + ln

(√
2πB n0(0)

b(0)

)
+O(1

t ).

And the claim (2.22) on ϕ(t, x) follows from this formula.

2.3 A more precise general asymptotics

We come back to the general model (2.1)–(2.2). We have proved the weak convergence of the

population density to a Dirac mass, in the sense of measures. Following the exact computation

in Section 2.2, it can also be made general.

The rigorous statement is the following corollary of the proof of Theorem 2.2

Corollary 2.5 With the assumptions of Theorem 2.2 and writing the solution to equation (2.1)–

(2.2) as n(t, x) = eϕ(t,x), we have

ϕ(t, x)

t
→ R(x, I), ∀x ∈ Rd. (2.25)

Notice that this a very weak statement which does not tell the details on the convergence rate

of I(t) for instance.
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Proof. The equation (2.1) yields

dϕ(t, x)

dt
= R

(
x, I(t)

)
.

For a given ε > 0, we choose a T large enough so that |R
(
x, I(t)

)
−R(x, I)| ≤ ε. Therefore we

have

ϕ(t, x) = ϕ(T, x) +

∫ t

T
R
(
x, I(s)

)
ds = ϕ(T, x) + (t− T )[R(x, I) +O(ε)],

ϕ(t, x)

t
=
ϕ(T, x)− TR(x, I)

t
+R(x, I) +O(ε).

The result follows immediately.

2.4 Two environmental variables

When several environmental variables are present the results are more difficult to establish. In

particular, the afore examples show that the quantities Ik may have different effects on the

population (increased growth, or increased death). Here we treat the case of equation (1.1) with

two variables, when they increase the pressure on the population,
∂
∂tn(t, x) = n(t, x) R

(
x, I1(t), I2(t)

)
, x ∈ Rd, t ≥ 0,

Ik(t) =
∫
ψk(x)n(t, x)dx, k = 1, 2,

(2.26)

with the following extension of the asumptions (2.3)–(2.5): there are constants 0 < Ikm < IkM <

∞ and 0 < R <∞ such that for all I
minx∈Rd R(x, I1

m, I) ≥ 0, maxx∈Rd R(x, I1
M , I) ≤ 0,

minx∈Rd R(x, I, I2
m) ≥ 0, maxx∈Rd R(x, I, I2

M ) ≤ 0,

(2.27)

max
x∈Rd

R(x, I1, I2) ≤ R, ∀Ik ∈ [Ikm, I
k
M ], (2.28)

and that there are constants Kk
− < Kk

+ such that,

−K1
+ ≤

∂R

∂I1
(x, I1, I2) < −K1

− < 0, −K2
+ ≤

∂R

∂I2
(x, I1, I2) < −K2

− < 0, (2.29)

n0 ∈ L1 ∩ L∞(Rd), n0 ≥ 0 and Ikm ≤
∫
Rd
ψk(x)n0(x)dx ≤ IkM . (2.30)

As before, we first mention the
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Theorem 2.6 With the assumptions (2.27), (2.28) and (2.30), there is a unique solution n ∈
C
(
R+;L1(Rd)

)
, n ≥ 0, to equation (2.26), and it satisfies,

Ikm ≤ Ik(t) ≤ IkM , ∀t ≥ 0, k = 1, 2. (2.31)∫ T

0

∫
Rd
R−
(
x, I(t)

)
n(t, x)dx dt < I0 +R IM T. (2.32)

The long time behavior uses more elaborate ingredients similar to the previous sections

Theorem 2.7 With the assumptions (2.27)–(2.30), there are limits as t→∞,

Ik(t)→ I∞k , k = 1, 2,

and n(t, x) concentrates on points x∞ such that

R(x∞, I∞1 , I∞2 ) = 0.

Proof. As before we define

dIk(t)

dt
= Jk(t) :=

∫
Rd
ψk(x)R

(
x, I1(t), I2(t)

)
n(t, x)dx. (2.33)

The proof is based again on the differential relations

dJk(t)
dt

= Sk(t)−A1
k(t)J1(t)−A2

k(t)J2(t), (2.34)

with

Sk(t) :=

∫
Rd
ψk(x)R2

(
x, I1(t), I2(t)

)
n(t, x)dx > 0,

Ajk(t) := −
∫
Rd
ψk(x)

∂R
(
x, I1(t), I2(t)

)
∂Ij

n(t, x)dx ≥ Kj
−

∫
Rd
ψk(x)n(t, x)dx ≥ Kj

− I
k
m > 0.

Lemma 2.8 Set α = min1≤j,k≤2K
j
− I

k
m, then

max(J1(t),J2(t)
)
− ≤ max(J1(0),J2(0)

)
−e
−αt

Proof. Set J = max(J1,J2). We have, for the times where this max is attained by J1(t),

dJ (t)

dt
≥ −A1

1(t)J1(t)−A2
1(t)J2(t),
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and thus
d
(
J (t)

)
−

dt
≤ −A1

1(t)
(
J (t)

)
− +A2

1(t)J2(t)sgn−
(
J (t)

)
When sgn−

(
J (t)

)
6= 0, this means J2(t) ≤ J1(t) < 0 and thus

d
(
J (t)

)
−

dt
≤ −A1

1(t)
(
J (t)

)
− ≤ −α

(
J (t)

)
−.

The same argument leads to the same inequality in case the max in attained by J2(t) and leads

to the result of the lemma.

The end of the proof of Theorem 2.7 is as before.

2.5 Evolutionary Stable Strategy, several nutrients

It is much more difficult to prove general convergence results for structured population models

with several environmental unknowns as
∂
∂tn(t, x) = n(t, x) R

(
x, I1(t), ..., IK(t)

)
, x ∈ Rd, t ≥ 0,

Ik(t) =
∫
ψk(x)n(t, x)dx, k = 1, ...,K.

(2.35)

Because it is natural that R(x, .) has only isolated zeros, the steady states can only be Dirac

masses. These are charaterized by the relations

n(x) =

I∑
i=1

%iδ(x− x̄i),

R(x̄i, Ī1, ..., ĪK) = 0, i = 1, ..., I,

Īk =
I∑
i=1

%iψk(x̄i), k = 1, ...,K.

(2.36)

Notice that there are many steady states in general. If we consider the case of a single environ-

mental variable K = 1 treated in section 2.1, for each Im < I ≤ IM there is at least one Dirac

mass steady state %(I)δ
(
x − x̄(I)

)
at least. Indeed, we can find the possible traits x(I) by the

relation

R
(
x̄(I), I

)
= 0. (2.37)

In adaptive dynamics jargon, such a state (x̄(I), I) is called a singular point. And such a singular

point always exists for Im < I ≤ IM because

min
x
R(x, I) < 0, max

x
R(x, I) > 0,
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as a consequence of assumpions (2.3), (2.5). Then the weight %(I) = I fits the definition of I

from n. But we have seen that only one of them is reached in long time.

This means that not all these states in (2.36) are stable in the sense that some initial data with

n0(x) > 0 for all x will converge to such a state. To see this we can ask a weaker requirement,

namely that n is Evolutionary Stable. This means that, given the environmental state (Ī1, ..., ĪK),

a small perturbation of n with n0(x) > 0 will go back to n. This requires that other traits than

the x̄i are decaying, i.e., R(x, Ī1, ..., ĪK) < 0 for x 6= x̄i, this means

max
x

R(x, Ī1, ..., ĪK) = 0 = R(x̄i, Ī1, ..., ĪK), i = 1, ..., I, (2.38)

this is again the pessimization principle.

Two consequences are noticeable which are the first and second variations conditions for a

maximum,

∇xR(x̄i, Ī1, ..., ĪK) = 0, i = 1, ..., I, (2.39)

D2
xxR(x, Ī1, ..., ĪK) ≤ 0, i = 1, ..., I. (2.40)

Notice that (2.38) is indeed a necessary condition for the stability of n among measure solutions

to the dynamics (2.35). To prove such a statement requires some material, as measure solutions

and we refer the reader interested in details to [39, 43], and more precise notions of stability as

Continuously Stable Strategy in [1]. This statement is however rather intuitive. If (2.38) did

not hold, then an initial perturbation with δn0(x) > 0 for x ∈ Bε a small ball of traits such that

R(x, Ī1, ..., ĪK) > 0, would further increase.

We conclude with underlying a shortcoming of the presentation we have adopted up to this

point. We have assumed that all the traits are represented initially in the population. Any

advantageous trait, in a certain environment due to the full population, can emerge and take

over the rest of the population. This is certainly realisitic for a lake where many species of

bacteria are present, maybe undetectable, and one of them will develop very quicky if the

conditions become favorables. This is not what we have in mind when the world ’evolution’

is used. Then the population is fixed and mutations can create new traits. Assuming these

mutations have a small effect on the trait, only small variations of the dominant trait x̄ are

possible. Therefore the local conditions (2.39), (2.40) are more realistic.

2.6 Intraspecific competition: example

Consider the model

∂n(t, x)

∂t
= n(t, x)

(
r(x)−

∫
K(x− y)n(t, y)dy

)
, (2.41)
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with

K ∈ C(R), K(·) ≥ 0,

∫
K(z)dz = 1.

There are many Dirac steady states, namely %(z)δ(x− z) for all r(z) = %(z)K(0). Most of them

are unstable because nearby z we can find values of x such that r(x)− %(z)K(x− z) > 0 (and

the corresponding initial value n0(x) > 0 will grow exponentially. In other word all those z are

unstable if

∃x such that
r(x)

r(z)
>
K(x− z)
K(0)

.

The condition for a stable Dirac steady state N(x) = %̄δ(x− x̄) is

r(x̄) = %̄K(0),

r(x) < %̄K(x− x̄) ∀x 6= x̄,

or, replacing %̄ from the first condition

r(x)

r(x̄)
<
K(x− x̄)

K(0)
∀x 6= x̄.

Combining it with the unstability condition we arrive at the min−max condition that x̄ realizes

the min over z in

min
z

max
x

[
r(x)

r(z)
− K(x− z)

K(0)

]
= 0 = max

x

[
r(x)

r(x̄)
− K(x− x̄)

K(0)

]
.

This makes a direct relation with game theory.

We illustrate this on the case of gaussian coefficients

r(x) =
1√

2πσ1
e
− |x|

2

2σ1 , K(z) =
1√

2πσ2
e
− |x|

2

2σ2 .

We have the

Proposition 2.9 For σ1 > σ2 there is a smooth steady state to (2.41) with gaussian coefficients

given by

N(x) =
1√
2πσ

e−
|x|2
2σ , σ = σ1 − σ2,

and Dirac masses are not stable steady states.

For σ1 < σ2 the Dirac mass %̄δ(x) is a stable steady state (and only the Dirac mass at 0 is

stable).

We refer to [69] for a proof.
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2.7 Intraspecific competition: a condition for monomorphism

We give a general condition leading to this case that is an extension of a case treated in [43]

The model is again

∂n(t, x)

∂t
= n(t, x)

(
r(x)−

∫
c(x, y)n(t, y)dy

)
, (2.42)

with an initial data satisfying

n0 ≥ 0, n0(x) > 0, ∀x ∈ B(0) a ball centered at 0. (2.43)

We use the following notations and assumptions

sup
y

cx(x, y)

c(x, y
:= q(x), (2.44)

r(0) > 0, (2.45)

r′(x)− q+(x) r(x) := p(x)

 ≥ P |x| for x < 0,

≤ −Px for x > 0,
(2.46)

for some constant P > 0.

This assumption means that r(x) has a maximum at 0 sufficiently peaked compared to c. And

a weaker condition is needed in fact which is given in the proof below.

Theorem 2.10 With the notations and assumptions (2.44)–(2.46) (or more generally (2.48)

below in place of (2.46)), we have

n(t, x) −→
t→∞

%̄δ(x),

for all bounded and closed intervals I that do not contain 0, there is a constant C such that∫
I
n(t, x)dx ≤ e−Ct,

finally there is ϕ̄ > 0 such that for t large enough

ϕ(t, x) ≤ ϕ̄ ln t.

The weight of the Dirac mass is given by the singular point condition R = 0, that is

r(0) = %̄b(0, 0).
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Proof. Step 1. We first prove that the total population satisfies

0 < %− ≤ %(t) =

∫
R
n(t, x)dx ≤ %+ <∞. (2.47)

We integrate equation (2.43) and find

d
dt%(t) =

∫
R r(x)n(t, x)dx−

∫
R2 b(x, y)n(t, y)n(t, x)dydx

≤ %(t)[max r −min b%(t)].

Consequently, we obtain

%(t) ≤ (%(0),
max r

min b
) := %+.

and also
d
dt%(t) =

∫
R r(x)n(t, x)dx−

∫
R2 b(x, y)n(t, y)n(t, x)dydx

≥ %(t)[rm − bM%(t)].

Step 2. Then, we set ϕ = ln(n) and write as usual

∂

∂t
ϕ(t, x) = r(x)−

∫
c(x, y)n(t, y)dy.

We prove that

ϕ(t, 0) ≤ ϕ̄ ln t ∀t ≥ t0.

Step 3. We compute for x < 0,

∂
∂tϕx(t, x) = r′(x)−

∫
cc(x, y)n(t, y)dy

= r′(x)−
∫ cc(x,y)

c(x,y) c(x, y)n(t, y)dy

≥ r′(x)− supy
cc(x,y)
c(x,y)

∫
c(x, y)n(t, y)dy

≥ r′(x)− q+(x)
∫
c(x, y)n(t, y)dy

≥ r′(x) + q+(x)
[
∂
∂tϕ(t, x)− r(x)

]
.

We now use the notations Q+(x) =
∫ x

0 q+(y)dy and the precise assumption

Π(x) := −
∫ x

0
p(y)eQ+(y)dy > 0 ∀x 6= 0. (2.48)

Then, this can be written, still for x < 0,

∂

∂t

(
ϕx(t, x)− q+(x)ϕ

)
≥ p(x),

∂

∂t

(
ϕ(t, x)e−Q+(x)

)
x
≥ p(x)e−Q+(x),
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(
ϕ(t, x)e−Q+(x)

)
x
≥
(
ϕ0(x)e−Q+(x)

)
x

+ t p(x)e−Q+(x).

Integrating between x < 0 and 0, we obtain

ϕ(t, x)e−Q+(x) − ϕ(t, 0) ≤ ϕ0(x)e−Q+(x) − ϕ0(0)− t Π(x),

ϕ(t, x) ≤ ϕ0(x) + eQ+(x)
[
ϕ(t, 0)− ϕ0(0)− t Π(x)

]
.

Because we know a priori the bound

ϕ(t, x) ≤ ϕ̄,

we conclude that

ϕ(t, x)eQ+(x) ≤ C(x)− t Π(x).

This clearly implies the second statement of the Theorem.

It remains to conclude that the total mass converges.

2.8 Another point of view: change time scale

One can also consider another point of view, using a rescaling in time
ε ∂∂tnε(t, x) = nε(t, x) R

(
x, Iε(t)

)
, x ∈ Rd, t ≥ 0,

nε(t = 0) = n0
ε ∈ L1

+(Rd),

Iε(t) =
∫
Rd nε(t, x)dx.

(2.49)

We assume  n0
ε → n0 in L1(Rd),

n0
ε(x) = e

u0ε(x)

ε , u0
ε(x)→ u0(x) uniformly.

Theorem 2.11 With these notations nε(t, x) = e
uε(tx)
ε and uε(t, x) → u(t, x),Iε(t) → I(t) a.e.

and u satisfies {
∂u
∂t = R

(
x, I(t)

)
maxx u(t, x) = 0 a.e. t

Some assumptions are needed of course, which should garantee that Iε(t) → I(t) a.e. by the

same BV technique as before.
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Chapter 3

Mutations in population models

Mutations can easily be included in the population models we have encountered so far. We

present here several aspects of the formalism. The most natural formalism consists in an integral

term which represents how much a mother of trait x may give an off-spring of trait y with a

certain probability. If the phenotypical changes are taken as very small, the mutation term

becomes a differential term. This is what we explain now.

3.1 Mutation kernels

The most natural formalism consists in an integral term which represents how much a mother of

trait x may give an off-spring of trait y with a certain probability. This is not the only possible

formalism. Indeed differential terms can also represent mutations, depending on the microscopic

models under consideration. The rigorous derivation of the equations we write in this Chapter

can be performed from Individual Based Stochastic Models and can be found for instance in

[24, 45, 35, 33, 34].

Consider a mutation probability µ ∈ [0, 1], then we introduce in equation (1.1) an additional

term representing mutations from the trait y to x and write

∂

∂t
n(t, x) = (1− µ)n(t, x) R

(
x, [n(t, ·)]

)
+ µ

∫
M(y, x)b(y)n(t, y)dy. (3.1)

Here b(·) represents the birth rate in case of a mutation and M(y, x) the mutation rate from y

to x.

Our purpose is to show that this model is closely related to another formalism, namely

∂

∂t
n(t, x) = (1− µ)n(t, x) R

(
x, [n(t, ·)]

)
+ µ∆n(t, x). (3.2)



3.2 The hyperbolic limit

In order to present scalings of the mutation terms, we depart from a generic and simpler for-

malism, namely

∂

∂t
n(t, x) + k(x)n(t, x) =

∫
K(y, x− y)n(t, y)dy. (3.3)

It is a conservative model under the condition∫
K(y, z)dz = k(y). (3.4)

For the hyperbolic limit, we rescale the equation as

∂

∂t
nε(t, x) +

1

ε

[
k(x)nε(t, x)−

∫
1

ε
K(y,

x− y
ε

)nε(t, y)dy
]

= 0. (3.5)

Theorem 3.1 The hyperbolic limit model is

∂

∂t
n(t, x) + div[V (x)n(t, x)] = 0,

V (x) =

∫
zK(x, z).

Proof. We change variables y → z = x−y
ε and we write it as

∂

∂t
nε(t, x) +

1

ε

[
k(x)nε(t, x)−

∫
K(x− εz, z)nε(t, x− εz)dz

]
= 0,

∂

∂t
nε(t, x) +

∫
1

ε

[
K(x, z)nε(t, x)−K(x− εz, z)nε(t, x− εz)

]
dz = 0,

The limit in distributions is obtained using a test function (in x only to simplify the formulas)

∂

∂t

∫
nε(t, x)Φ(x)dx+

∫ ∫
1

ε

[
Φ(x)− Φ(x+ εz)

]
zK(x, z)nε(t, x)dz dx = 0,

∂

∂t

∫
nε(t, x)Φ(x)dx−

∫ ∫
z.∇Φ(x)K(x, z)nε(t, x)dz dx = O(ε).

In the limit, this is a weak formulation of

∂

∂t
n(t, x) + div[

∫
zK(x, z)n(t, x)] = 0.

and the result is proved.
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3.3 The parabolic limit

A more general equation in the limit can be obtained with another scaling

∂

∂t
nε(t, x) +

1

ε2

[
k(x)nε(t, x)−

∫
1

ε
Kε(y,

x− y
ε

)nε(t, y)dy

]
= 0. (3.6)

Then we assume∫
Kε(y, z)dz = k(y),

∫
zKε(y, z)dz = εV (y),

∫
zizjKε(y, z)dz = 2Aij(y). (3.7)

Theorem 3.2 The parabolic limit model is

∂

∂t
n(t, x)− ∂2

∂xi∂xj

[
Aij(x)n(t, x)

]
+ div

[
V (x)n(t, x)

]
= 0.

Proof. As before, we have

∂

∂t
nε(t, x) +

∫
1

ε2

[
Kε(x, z)nε(t, x)−Kε(x− εz, z)nε(t, x− εz)

]
dz = 0.

As before, we introduce a test function Φ(x) and find

d

dt

∫
Φ(t, x)nε(t, x) +

∫
nε(t, x)

∫
Kε(x, z)

Φ(t, x)− Φ(t, x+ εz)

ε2
dz dx = 0,

d

dt

∫
Φ(t, x)nε(t, x) +

∫
nε(t, x)

∫
Kε(x, z)

[
−z.∇Φ(t, x)

ε
+
zizj

2
D2
ijΦ(t, x)

]
dz dx = O(ε).

And thus, we arrive at the announced limit.
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Chapter 4

Branching and transition to

dimorphism in models with two

environmental unknowns

The formalism leading to monomorphic populations, as described in Chapter 5, is based on a

single environmental unknown I(t). It allows us to understand how dimorphism can occur when

the model contains two environmental functions along with Section 2.4. The equation is written

as
∂

∂t
n(t, x) = n(t, x) R(x, I1(t), I2(t))

I1(t) =

∫
ψ1(x)n(t, x)dx, I2(t) =

∫
ψ2(x)n(t, x)dx

4.1 what is branching?

It may happen that, at a certain time t∗ a monomorphic population

n(x, t) ≈ %(t)δ(x− x̄(t)), t ≤ t∗,

can evolve towards a point where suddenly there is an adaptive advantage to split is two co-

existing subpopulations. In analytical terms this means

n(x, t) ≈ %1(t)δ(x− x̄1(t)) + %2(t)δ(x− x̄2(t)), t ≥ t∗,

with x̄1(t) 6= x̄2(t) for t > t∗.

A desirable property is continuity at the branching time, say t∗, i.e.

x̄1(t∗) = x̄1(t∗) = x̄(t∗), %(t∗) = %1(t∗) + %2(t∗).



To be a convergent point for a monomorphic population the branching point should satisfy

R(xb, Ib1, I
b
2) = 0,

∂

∂x
R(xb, Ib1, I

b
2) = 0. (4.1)

To sustain a divergent dimorphic population, we should have

∂2

∂x2
R(xb, Ib1, I

b
2) > 0. (4.2)

It is not completely obvious to build models undergoing smooth branching, neither to run

numerical simulations exhibiting them. The reason is that mutations are needed to depart from

a monomorphic actractive point; however the mutation rate should be small enough to observ

well localized populations, this also means many grid points should be used.

4.2 A simple example

To build a simple model with quadratic convex nonlinearities according to (4.2), we take the

simpler choice

R(x, I1, I2) = 1− d1(x)I1 − d2(x)I2, 0 < x < 1,

d1(x) = 1− x2, d2(x) = 1− (1− x)2.

We also choose xb = 1/2 and conditions on the weights ψi are determined in our analysis below.

We consider a monomorphic dynamics n = %̄(t)δ(x− x̄(t)), these staisfy the relation between

density and position as

R(x, %xψ1(x), %xψ2(x)) = 0, (defines %x for a given x).

Next, we write the conditions to reach a stationary state at xb from a point x̄(t) < xb (and these

include (4.1))

∂

∂x
R(x, %xψ1(x), %xψ2(x)) > 0,

∂

∂x
R(xb, %bψ1(xb), %bψ2(xb)) = 0.

The secodn condition is simple to impose; because xb = 1/2 and d′1(xb) = −d′2(xb), this implies

that (the second equality below is a choice of normalisation)

ψ1(xb) = ψ2(xb) = 1.

It remains to impose the first condition, that is for some x < xb, the selection gradient should

be positive that is

d′1(x)ψ1(x) + d′2(x)ψ2(x) < 0.
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Because this quantity vanishes at xb this is a second order condition

d′′1(xb)ψ1(xb) + d′1(xb)ψ′1(xb) + d′′2(xb)ψ2(xb) + d′2(xb)ψ2(xb) > 0

and writing explicitely the numbers

4− ψ′1(xb) + ψ′2(xb) > 0.

We have taken

ψ′1(x) =
1

4
+ 3(1− x)2, ψ′2(x) =

1

4
+ 3x2.

4.3 A smoother example
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Figure 4.1: Left:Isovalues of the population density n(x, t) computed with the model (4.3)–(4.4).

The monomorphic population exhibits branching at time (y axis) t∗ = 4.5. Right: The environmental

unknowns I1(t) and I2(t) > I1(t). See Figure 4.2 for profiles at different times.

We present a simple example that is set for x ∈ (0, 1) and which is symmetric with respect to

the point x = .5 for the equation

∂

∂t
n− ε∆n = nR

(
x, I1(t), I2(t)

)
,

completed with Neumann boundary conditions at x = 0 and x = 1.

Consider the growth rate

R(x, I1, I2) :=
x

1 + I1
+

1− x
1 + I2

− 0.25 +
(x− .5)2

[1 + 10(x− .5)2](1 + I1)(1 + I2)
, (4.3)

I1(t) =

∫ 1

0
xn(x, t)dx, I2(t) =

∫ 1

0
(1− x)n(x, t)dx. (4.4)
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Numerical simulations are run with ε = 2 10−4, 6000 grid points and initial data n =

exp
(
−2 (x−.2)2

ε

)
. Isovalues of the population density n(x, t) are presented in Figure 4.1 to-

gether with the two function sI1(t) and I2(t). Snapshots at three different times of the evolution

are presented in Figure 4.2 before (monomorphic), during and after (dimorphic) branching. The

final time is t = 8.

To assert that the grid is fine enough, we have run the code with 12000 points and we have

obtained the same results. With 3000 grid points, the global picture is the same but branching

occurs a little forward of x̄(t∗) = 1/2 and the asymmetry of the early two branches is a little

stronger.

4.4 Why does it branch?

In the example above, the branching point has been chosen at x̄b = .5. The initial population

density approximates the Dirac mass at x = .2 and all along the monomorphic branch x̄(t) < 1/2.

For this reason

I1(t) < I2(t) for t < t∗,

as can be observed in Figure 4.1 (picture on the right). According with the canonical equation

we have, with M(t) =
(
D2ϕ(x̄(t), t)

)−1
> 0,

dx̄(t)

dt
= M(t)∇xR

(
x̄(t), t

)
> 0,

and this is mainly due to the first two terms in R, namely x
1+I1

+ 1−x
1+I2

− 0.25, that run the

dynamics in this monomorphic regime. This can be seen in the upper right picture in Figure

4.2 which shows R to be almost afine increasing.

Thus x̄(t) increases untill it reaches x̄(t∗) = 1/2. At that time t∗, by symmetry we obtain

I1(t∗) = I2(t∗). The singular point x̄b = .5 is characterized by

Īb1 = %̄bx̄b, Īb2 = %̄b(1− x̄b),

R(x̄b, Īb1, Ī
b
2) = 0, i.e., %̄b = 6,

∇R(x̄b, Īb1, Ī
b
2) = 0 =

1

1 + Īb1
− 1

1 + Īb2
, (satisfied).

After reaching this point, the dynamics is continued with Ī1(t) = Ī2(t) > Īb1 = Īb2 = 3. Then,

the last term (x−.5)2

[1+10(x−.5)2](1+I1)(1+I2)
becomes dominant and for which we have two roots of

R = 0, i.e., of
(x− .5)2

[1 + 10(x− .5)2](1 + I1)(1 + I2)
= .25− 1

1 + I(t)
.
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Notice that the denominator is not essential and has only been chosen so as to smooth out the

branching by penalizing x = 0 and x = 1 which are attractive. The factor (1 + I1)(1 + I2)

normalizes the first two terms in R with this last term.

But the singular point is strictly repulsive because

D2
xxR(x̄b, Īb1, Ī

b
2) =

2

(1 + I1)(1 + I2)
> 0.
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Figure 4.2: Snapshots at three different times of the evolution corresponding to the isovalues in

Figure 4.1. We show the profiles before (monomorphic), during and after (dimorphic) branching.

Left: the population density n(·, t). Right: the adaptative landscape R
(
x, I1(t), I2(t)

)
.
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Chapter 5

Rare mutations in population

models and monomorphism

We now present a scaled version of the model. We introduce a small parameter ε > 0 which

represents the average size of mutations. It is also used to rescale time so as to consider the

population on a long time scale compared to the time scale of a generation. In other words we

use the evolutionary time scale rather than the demographic timescale. The main assumption

behind this rescaling is that only small mutations of the phenotypical trait are possible (or more

precisely on its influence on environment and population growth).

The asymptotic analysis is performed later. Here we just mention uniform estimates as ε→ 0.

5.1 Integral models for mutations

The most natural models for describing mutations consists in including a rate of mutations in

birth terms and a probability of mutation from the trait x to y. Here, we only present the case

of the example 1 of our general presentation in Chapter 1, namely equation (1.3). Including

mutations, we arrive to the following type of equation for the density n(t, x) of individuals with

trait x,



ε ∂∂tnε(t, x) =
[ b(x)

1+Iε(t)
−
(
1 + Iε(t)

)
d(x)

]
nε(t, x) + 1

1+Iε(t)

∫
1
εK(x−yε )β(y)nε(t, y)dy,

Iε(t) =
∫
nε(t, x)dx,

nε(t = 0, x) = n0
ε(x) ≥ 0, n0

ε ∈ L1 ∩ L∞(R).

(5.1)
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Figure 5.1: Evolution of the trait x ∈ (0, 1) as a function of time (y axis) for the model (??)

with b(x) = 1 + 3x, d = β = 1. The parameter value for ε is 3 10−3.This figure shows the isovalues

of n(t, x) and a plot of n is presented in Figure 5.2.
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Figure 5.2: Final time of the simulation shown in Figure 5.1. Plot of the population density

nε(t, ·) (left) and the phase function ϕε(t, ·) (right) as introduced in (5.19).

The parameter ε in front of the time derivatives just indicates that we have rescaled time to

consider the long time behavior on the scale ε. We also have used two different birth rates for

neutral births (rate b(x)) and for the births arising with mutations (rate β(x)). Both are limited

by a factor depending upon the total population size Iε(t), as pecial case of the model (1.3),

(1.4). The probability kernel K(·) describes the mutation rate and we assume that

K(·) ≥ 0,

∫
K(z)dz = 1,

∫
K(z)e|z|

2
dz <∞. (5.2)
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We need that a population described by such a model does not explode neither get extinct. For

that we assume, still in accordance with (1.3), (1.4), (1.5),

b, d, d′ and β are Lipschitz continuous. (5.3)

0 < bm ≤ b(x) + β(x) ≤ bM <∞, 0 < dm ≤ d(x) ≤ dM <∞, (5.4)

with the following assumption and notations

Im =

√
bm
dM
− 1 > 0, IM =

√
bM
dm
− 1. (5.5)

A numerical simulation of this equation is exhibited in Figures 5.1 and 5.2. The value x ∈ (0, 1)

has been discretized with 1500 points and ε = 1/300, this is a small mutation rate and we can

already guess that solutions to the system (??) are highly concentrated.

The existence of solutions is a classical matter (see [90, 43] for instance). An example of

existence result with uniform bounds is as follows (we drop the dependency of n and I upon ε

which is not relevant here)

Theorem 5.1 With the assumptions (5.2)–(5.5), the system (??) has a unique nonnegative

solution such that n, ∂
∂tn ∈ C(R+;L1 ∩ L∞(R)). Assume also that I0 := I(t = 0), satisfies

Im ≤ I0 ≤ IM , then we have for all t ≥ 0

Im ≤ I(t) ≤ IM . (5.6)

Proof. We do not provide a complete proof of this theorem but just mention that the lower

and upper bounds on I(t) are easily deduced, integrating in x the equation (??) which gives

ε
d

dt
I(t) =

∫ [(
1 + I(t)

)(
b(x) + β(x)

)
− d(x)

1 + I(t)

]
n(t, x)dx

and thus

ε
d

dt
I(t) ≤ I(t)

[(
1 + I(t)

)
bM −

dm
1 + I(t)

]
,

and whenever I(t) attains the value IM then ∂
∂tI(t) vanishes and thus this value is never over-

passed.

A similar argument gives the lower bound.

Population models of this type have been studied by several authors, and in particular possible

steady states. See [24, 26, 27, 32, 30, 47, 43] and the references therein.
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5.2 Parabolic Lotka-Volterra models for mutations

It is also standard to describe the mutations by a Laplace term. Analysis and derivation of this

model, in particular from stochastic individual based systems, can be found in [78, 24, 33, 35, 43].

More generally, differential models are also usal for describing mutations, see [24, 29, 75]. In

the case of a differential model, it is possible to state and study mutation equations in the spirit

of the general model treated in Section 2.1. This yields a particularly simple formalism
∂
∂tnε − ε∆nε = nε

ε R
(
x, Iε(t)

)
, x ∈ Rd, t ≥ 0,

nε(t = 0) = n0
ε ∈ L1(Rd), n0

ε ≥ 0,

(5.7)

Iε(t) =

∫
Rd
ψ(x)nε(t, x)dx. (5.8)

The neutral mutations are now modeled by the Laplace term (this is a price to pay simplicity,

the corresponding birth rate is not included here). The function ψ is given and measures the

uptake of individuals with trait x on the environment. Notice that this makes a difference in this

model while it did not for the pure selection model in Section 2.1 where we can always change

n(t, x) to ψ(x)n(t, x) in order to include such a term whithout changing the equation.

We assume that there are two constants ψm, ψM such that

0 < ψm ≤ ψ ≤ ψM <∞, ψ ∈W 2,∞(Rd). (5.9)

The quantity R is called the invasion exponent because it describes the ability of the individuals

of trait x to invade the population with environmental state I(t). It is negative for certain traits

and positive for others We assume that there are two constants 0 < Im ≤ IM <∞ such that

min
x∈Rd

R(x, Im) = 0, max
x∈Rd

R(x, IM ) = 0, (5.10)

and that there exists a constant K > 0 such that, for any x ∈ Rd, I ∈ R,

−K ≤ ∂R

∂I
(x, I) < −K−1 < 0, sup

Im/2≤I≤2IM

‖R(·, I)‖W 2,∞(Rd) ≤ K. (5.11)

These mean that in the environmental conditions Im < I < IM some traits decay but not all,

and that the environmental condition IM is so defavorable that the whole population decreases.

We will also use the assumption

n0
ε ∈ L∞(Rd), ∇n0

ε ∈ L1(Rd) and Im ≤
∫
Rd
ψ(x) n0

ε(x)dx ≤ IM , (5.12)
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and the notation

%ε(t) =

∫
Rd
nε(t, x)dx. (5.13)

Notice that the assumption (5.9) and the bound Im ≤
∫
Rd ψ(x) nε(t, x) dx ≤ IM imply

Im
ψM

=: %m ≤
∫
Rd
nε(t, x)dx ≤ %M :=

IM
ψm

.

We recall that we have the following existence result and a priori bounds (here C denotes

various constants which maybe different from line to line)

Theorem 5.2 With the assumptions (5.9)–(5.12) and Im − Cε2 ≤ Iε(0) ≤ IM + Cε2, there is

a unique solution nε ∈ C
(
R+;L1(Rd)

)
, to equation (5.7)–(5.8), and it satisfies,

Im − Cε2 ≤ Iε(t) ≤ IM + Cε2. (5.14)

Again, we do not recall the proof of existence of this non-local Lotka-Volterra parabolic equation

which falls in a class that has been largely studied. Improvments are possible, e.g., according to

[43] the lower bound is unessential because they are indirect ways to guarantee non-extinction

a posteriori, we keep it here for the sake of simplicity. Section ?? gives another and stronger

uniform bound in time, a uniform BV bound on Iε(t). Here, we just indicate the derivation of

the upper bound in (5.14). We have

d
dt

∫
Rd ψ(x) nε(t, x) dx = ε

∫
Rd nε(t, x) ∆ψ dx+ 1

ε

∫
Rd ψ(x)nε(t, x)R

(
x, Iε(t)

)
≤ C1εIε(t) + 1

ε Iε(t) maxx∈Rd R
(
x, Iε(t)

)
,

and, from the assumption (2.5), the right hand side becomes negative as soon as Iε(t) overpasses

IM + C1
K ε

2 and the result follows.

5.3 Limit of small mutations (monomorphic case)

We can state a very typical and simple asymptotic result proved in [10] and which explains the

numerical results already depicted in Figures 5.1 and 5.2. It deals with the case when dimension

d is equal to 1 and when the function R(x, I) is also monotone in x. It uses, along with the

precised asymptotics in Section 2.3, the logarithmic change of unknown. This is the reason why

we assume

ϕ0
ε := ε log n0

ε is bounded in W 1,∞(R), ϕ0
ε −→
ε→0

ϕ0 ≤ 0 uniformly. (5.15)
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Figure 5.3: A numerical example of discontinuous solution in the limit εto0 of equation (5.7)–

(5.8). The abscissae is time. (Left) The population density %(t). (Right) The concentration point

x̄(t) (in fact isovalues of the density nε(t, x)). Figure taken from [10].

Theorem 5.3 (Dimension d = 1) We assume (5.9)–(5.12), (5.15), and

∀Im < I < IM there is a unique X(I) ∈ R such that R
(
X(I), I

)
= 0. (5.16)

Then, after extraction of a subsequence, the solution nε(t) to equation (5.7)–(5.8) converges in

the weak sense of measures to a dirac mass

nεk(t) ⇀
ε→0

%(t)δ(x− x̄(t)), (5.17)

and we have

x̄(t) = X(I(t)), R
(
x̄(t), I(t)

)
= 0,

and the pair (x̄(t), I(t)) satisfies the constrained Hamilton-Jacobi equation given later on.

Such a population is called monomorphic because a single trait is represented asymptoti-

cally. This is the general situation with a single environmental variable I(t) (this is called the

Competitive Exclusion Principle, [46]).

Notice that this limit, for a nonlocal Volterra equation is very different from the asymptotic,

under similar rescaling, for reaction diffusion equations. In the later case, the limit is described

by a propagating front (typically fresh and consumed chemicals). See [8, 14, 101]. For nonlocal

equations, the concentration as Dirac masses seems a general asymptotic behavior, see [56, 55].

Finally, the maps t 7→ X(t) and t 7→ %(t) are not very regular, in particular they can be

discontinous (see the example in Figure 5.3. One can prove BV regularity but not more. Also

an interesting point here is that these maps cannot be described in a simple manner, by ordinary

differential equations, by opposition to the case of ’canonical equations’ introduced in [45].

The proof of Theorem 5.3 is given in [10] and follows earlier ideas from [47]. We recall below

the main ideas of a formal derivation.
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5.4 Formal asymptotic analysis (parabolic model)

It is rather easy to guess why Dirac concentrations should appear in th elimit ε → 0 in the

parabolic equation (5.7)–(5.8). On the one hand, ultiplying the equation by ε, we find

nε(t, x)R
(
x, Iε(t)

)
= O(ε),

and the formal limit gives

n(t, x)R
(
x, I(t)

)
= 0.

On the other hand, from the L1(Rd) bound on n(t, ·), this limit n(t, x) in a bounded measure,

which is therefore supported by the zeros on R(x, I). From our assumptions this is an isolated

point X(I). Therefore we shouls have

n(t, x) = %̄(t)δ
(
x− x̄(t)

)
, with x̄(t) = X

(
I(t)

)
. (5.18)

This is the result announced in Theorem 5.3.

Of course there are many difficulties to make this argument rigorous

• the quantity nε(t, x)R
(
x, Iε(t)

)
does not pass to the limit so easily because Iε(t) does not

converge uniformly to I(t),

• one should first prove that Iε(t) converges a.e. to I(t) to have a chance to pass to the limit,

• a differential information on the limit I(t) or n(t, x) should come out to use that the mutations

occur according to the term ∆n or something else; the limit should see this specific form. For

instance replacing ∆n by 2∆n should have an influence on the limit.

A step in this direction is to follow the argument leading to the precise asymptotics in Section

2.3. This means that we introduce again the change of unknowns

nε(t, x) = eϕε(t,x)/ε. (5.19)

A direct computation shows that it satisfies the following equation, equivalent to (5.7),
∂
∂tϕε(t, x) = |∇ϕε|2 +R

(
x, Iε(t)

)
+ ε∆ϕε,

ϕε(t = 0, x) = ϕ0
ε(x) := ε lnn0

ε.

(5.20)

This is a classical viscous Hamilton-Jacobi equation. The recent theory developed by Crandall

and Lions (see [38, 6, 50]) allows to study the limit as ε→ 0 and to define the so-called viscosity

solutions. To explain in a few words the interest of this concept, we can say the following: one

cannot hope that the solutions to an Hamilton-Jacobi equation are C1 but Lipschitz continuity

is natural from the structure of the equation. The viscosity solution is usually unique while the
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almost everywhere solution is not.

Following [47, 9, 10], in the limit ε → 0, we obtain a viscosity solution to the constrained

Hamilton-Jacobi equation 

∂
∂tϕ(t, x) = R

(
x, I(t)

)
+ |∇ϕ|2,

max
x∈R

ϕ(t, x) = 0, ∀t > 0,

ϕ(t = 0, x) = ϕ0(x).

(5.21)

The new feature of this equation, compared to the standard Hamilton-Jacobi equation, is that

its solution is the pair
(
ϕ(t, x); I(t)

)
. The quantity I(t) is a Lagrange multiplier associated with

the constraint maxx∈R ϕ(t, x) = 0.

This constraint follows from the uniform a priori bounds proved in Theorem 5.2, stating

that the total mass of nε neither explode neither vanishes. This proves that we cannot have

ϕ(t0, x0) > 0 at any point (t0, x0), otherwise this is also true uniformly for nε and the total

mass explodes as ε→ 0. This also proves that we cannot have ϕ(t, x) < −a < 0 otherwise this

is also true uniformly for nε and the total mass vanishes as ε → 0. Therefore, we should have

maxx∈R ϕ(t, x) = 0.

Back to the relation between nε and ϕε in (5.19), we see that the Dirac mass in (5.18) is now

related to ϕ by

ϕ
(
t, x̄(t)

)
= 0. (5.22)

Also because the equation (5.21) gives us I(t) we can recover the weight of the Dirac mass by

I(t) =

∫
Rd
ψ(x)n(t, x)dx = %(t)ψ

(
x̄(t)

)
.

5.5 Formal asymptotic analysis (integral model)

We can hope for the similar concentration effect, and similar theoretical results, for the limit

ε→ 0 in the integral equation (??). We explain why in this section.

Since, in the weak measure sense 1
εK( ·ε)→ δ(·), the mutations are not a first-order effect (and

act only in the present time scale) therefore we can think of the model as close to

∂

∂t
n(t, x) =

[b(x) + β(x)

1 + %(t)
−
(
1 + %(t)

)
d(x)

]
n(t, x), %(t) =

∫
n(t, x)dx
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which concentrates to a Dirac mass for long times as proved in Section 2.1:

n(t, x)→ %l δ(x = xl) as t→∞,

at least if
√

b(x)+β(x)
d(x) − 1 attains it maximum %l at a single point xl.

For this reason one expects the same type of concentration for nε(t, x) but with varying weights

and positions

nε(t, x)→ %̄(t) δ(x = x̄(t)) as ε→ 0, (5.23)

In order to describe these concentrations, and following again [47] and the motivations in

Section 5.4 , an asymptotic calculation is needed which we now perform, still in a formal way.

We consider again the ansatz (5.19), namely

nε(t, x) = eϕε(t,x)/ε,

and obtain from equation (??)

∂

∂t
ϕε(t, x) =

[ b(x)

1 + %ε(t)
−
(
1 + %ε(t)

)
d(x)

]
+

1

1 + %ε(t)

∫
K(z)β(x+ εz)e(ϕε(t,x+εz)−ϕε(t,x))/εdz,

after changing y to z = (x− y)/ε. The limit ε→ 0 is now clear. We set

H(p) :=

∫
K(z)ezpdz, (5.24)

a convex Hamiltonian, that arises naurally in jumps processes (see [93] for instance).

And, we obtain for the limit

∂

∂t
ϕ(t, x) =

b(x)

1 + %(t)
−
(
1 + %(t)

)
d(x) +

1

1 + %(t)
β(x)H

( ∂
∂x
ϕ(t, x)

)
. (5.25)

On the other hand, the a priori bound in Theorem 5.1 tells us that nε, in total mass, does not

explode neither vanishes. Therefore ϕ(t, x) has to be nonpositive (otherwise nε blows up), but

cannot be everywhere negative (otherwise ne would get extinct). Therefore we arrive at the

conclusion that

max
x∈R

ϕ(t, x) = 0 ∀t > 0. (5.26)

If this maximum is attained at a single point, x̄(t) we arrive at the conclusion that (5.23) indeed

holds true and the mass can be recovered by the fact that

∂

∂t
ϕ(t, x̄(t)) =

∂

∂q
ϕ(t, x̄(t)) = 0,
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which implies that the growth rate vanishes (this is the so-called pessimization principle, cf.

[87, 46]). This gives the characterization of the limiting parameters
ϕ(t, x̄(t)) = 0 (defines x̄(t)),

b(x̄(t))+β(x̄(t))
1+%(t) =

(
1 + %(t)

)
d(x̄(t)) (defines %̄(t)).

Again, we recall that from a PDE point of view the system (5.25), (5.26) is a constrained H.-J.

equation which has to be solved for ϕ(t, x) and %(t). the parameter %(t) is a Lagrange multiplier

associated with the constraint (5.26). This makes the originality and difficulty of this problem.

5.6 The case of systems

Systems of equations are important for applications. One can wonder weither the concentration

effect still holds true and if the asymptotic method described above, and based on Hamilton-

Jacobi equations, can be extended.

An typical example is the classical example of juveniles and adults already introduced in

Section ??. Following [40, 25], this system with mutations reads after rescaling the system can

be written as
ε
d

dt
nε(t, x) =

∫ ∞
0

b(y)βε(x, y)pε(t, y)dy −m1(S1ε(t))nε(t, x)− xnε(t, x),

ε
d

dt
pε(t, x) = xnε(t, x)−m2(S2ε(t))pε(t, x).

(5.27)

The asymptotic analysis is performed in [32], and the main new qualitative aspect, compared

to Theorem 5.2, is that dimorphism is possible (even though not asymptotically stable). Another

new aspect is that the Hamiltonian arising in the Hamilton-Jacobi equation is more complicated

compared to (5.24). This relies on a known and interesting general theory that one can find for

front propagation in [8].

5.7 The relation with canonical equations

In the case of individual based stochastic models, it is possible to write an ordinary differential

equation for the dynamics of the fittest trait x̄(t) arising in the formula (5.17). See [45, 34]. The

denomination canonical equation usually refers to such a differential equation for the position of

the dominant trait in trait space.
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In the context of the asymptotic theory presented above in Theorem 5.3, we can also derive

an analog of the canonical equation from the constrained Hamilton-Jacobi equation. We argue

with a computation that holds true in C2 regularity regions for the solution ϕ(t, x) and for the

fittest trait x̄(t), to both equations (5.21) and (5.25). In order to present both computations

together, we consider the more general case of the solution (ϕ(t, x), I(t)) to
∂
∂tϕ(t, x) = R

(
x, I(t)

)
+H

(
x, I(t),∇ϕ(t, x)

)
, t ≥ 0, x ∈ Rd,

max
x∈R

ϕ(t, x) = 0, ∀t > 0,
(5.28)

with R(x, I) defined such that the Hamiltonian H(x, I, p) satisfies

H
(
x, I, 0

)
= 0, ∀x, I. (5.29)

When the mutation kernel is symmetric in (5.25), we also find that

∇pH
(
x, I(t), 0

)
= 0, ∀x, I. (5.30)

Finally we complete, still according to the theories developed in Sections 5.4 and 5.5, by a C2

curve x̄(t) such that

ϕ
(
t, x̄(t)

)
= 0. (5.31)

We are going to prove the following alternative for the canonical equation:

Proposition 5.4 Consider a hamiltonian H(x, I, p) satisfying (5.29), (5.30). For a C2 function

ϕ(t, x), and a C1 curve x̄(t) satisfying (5.28), (5.31), we have

R
(
x̄(t), I(t)

)
= 0, (5.32)

dx̄(t)

dt
=
(
−D2

xxϕ(t, x̄(t)
)−1

.∇xR
(
x̄(t), I(t)

)
. (5.33)

Notice that −D2
xxϕ is a nonnegative matrix because x̄(t) corresponds to a maximum of ϕ(t, ·).

Therefore, in one dimension, one can read the direction in which x̄(t) moves off from (5.33) and

in fact from the selection gradient (also sometimes called fitness gradient) ∇xR
(
x, I(t)

)
.

Proof. On the one hand, we can use that (5.31) defines a maximum of ϕ according to the

constraint in equation (5.29), to infer (here and in the following we omit the argument (t, x̄(t)))

∂ϕ

∂t
= 0, ∇xϕ = 0.
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Using this information in (5.29), we directly find the equality (5.32). And we can also differen-

tiate (5.31) with respect to t and we obtain,

∂2ϕ

∂t∂x
+D2

xxϕ .
dx̄

dt
= 0 (5.34)

On the other hand, differentiating (5.28) with respect to x we find, in general

∂2ϕ

∂t∂x
(t, x) = ∇xR

(
x, I(t)

)
+∇xH

(
x, I(t),∇ϕ(t, x)

)
+∇pH

(
x, I(t),∇ϕ(t, x)

)
.D2

xxϕ(t, x).

(5.35)

But if we specialise to x = x̄(t) then, since H(x, I, 0) = 0 from (5.29) and ∇pH(x, I, 0) = 0 from

(5.30), this boils down to
∂2ϕ

∂t∂x
= ∇xR

(
x̄(t), I(t)

)
. (5.36)

Combining (5.34) and (5.36) we obtain (5.33).

Because the matrix D2
xxϕ is not known a priori (one need to solve the Hamilton-Jacobi equa-

tion), we may try to go further and differentiate (5.35) once more with respect to x and subse-

quently put x = x̄(t). We restrict ourself to one dimension for a simpler analysis of the outcome.

Using again (5.29), (5.30), we obtain the differential equation

∂

∂t

(
∂2ϕ

∂x2
(t, x)

)
=
∂2R

∂x2

(
x̄(t), I(t)

)
+Hpp

(
x̄(t), I(t), 0

)(∂2ϕ

∂x2
(t, x)

)2

. (5.37)

Along the path (t, x̄(t)) we obtain

d

dt

(
∂2ϕ

∂x2

)
=
∂2R

∂x2

(
x̄(t), I(t)

)
+Hpp

(
x̄(t), I(t), 0

)(∂2ϕ

∂x2

)2

+
∂3ϕ

∂x3

dx̄

dt
. (5.38)

Continuing this process to recover ∂3ϕ
∂x3

, we need a fourth derivative of ϕ and so on. We directly

see that the Hamilton-Jacobi system boils down to an infinite system of ODEs and no finite

closure can describe entirely the adaptive dynamic system for x̄(t).

5.8 Convergence Stable Strategy and ESS

We still consider the general formalism of Section 5.6, and we focus on the ODE (5.33) describing

a monomorphic population and analyze the possible limits as t→∞.

We begin with the steady states (x̄∞, Ī∞). They should satisfy, taking also into account (5.32),

R(x̄∞, Ī∞) = 0, ∇xR(x̄∞, Ī∞) = 0, (5.39)
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or, in AD jargon, x̄∞ should be a singular point.

Not all of them can be reached by the dynamics departing from a neighboring point, i.e.,

(x̄∞, Ī∞) = lim
t→∞

(
x̄(t), I(t)

)
.

To analyze the stability, we need the sign of dx̄
dt near t = ∞, and thus we consider the second

derivative of x̄(t) at the point x̄∞. From (5.33) we find, using (5.39),

d2x̄(t)

dt2
=
(
−D2

xxϕ(t, x̄∞

)−1
.
d

dt
∇xR

(
x̄(t), I(t)

)∣∣∣
t=∞

.

Define, as usual, (see [46])

c22 =
∂2R

∂x2
(x̄∞, Ī∞), (5.40)

c12 =
∂2R

∂x∂I
(x̄∞, Ī∞))

dI

dx
(x̄∞), (5.41)

and note that (since D2
xxϕ “enters” the differential equation for x̄(t) only via a signed factor)

whether or not x̄(t) moves to or from the singular point is completely determined by the sign of

c22 + c12. In particular the movement is towards the singular point precisely when

c22 + c12 < 0 (5.42)

or, in the jargon of adaptive dynamics, when the singular point is Convergence Stable.

Note also that, thanks to (5.32), we have

0 =
∂R

∂x

dx̄(t)

dt
+
∂R

∂I

dI(t)

dt
,

which allows to compute along the path (x̄(t), I(t))

dI

dx
= −Rx

RI

(
x̄(t), I(t)

)
Using (5.39), we conclude that dI

dx(x̄∞) = 0. Therefore, for the model with a single nutrient, the

stability is to say that

c22 < 0.

We can also perform the analysis directly from the Hamilton-Jacobi equation, without refering

to the canonical equation. The steady state equation corresponding to (5.28) reads
H
(
x, Ī∞,

∂ϕ
∂x (x)

)
= −R

(
x, Ī∞

)
,

maxx ϕ(x) = 0, ϕ(x̄∞) = 0.

(5.43)
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Since we can assume also H ≥ 0 (for the cases derived so far), there can be a solution only if

the condition R(x, Ī∞) ≤ 0 holds for all x. Since ∂
∂xϕ(x̄∞) = 0 is a singular point, from(5.29)

we find R(x̄∞, Ī∞) = 0. Then, we find the condition

max
x

R(x, Ī∞) = 0 = R(x̄∞, Ī∞), (5.44)

and subsequently, again we recover

c22 < 0. (5.45)

Or, in other words, with a singular point one can associate a steady state only when it is an

Evolutionary Stable Strategy in accordance with the case without mutations in (2.38). The

population state ((x̄∞, Ī∞) corresponds to an unbeatable strategy. No mutant can invade such

a population since its growth rate will be negative.
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Chapter 6

Local competition and

polymorphism

The models we have used so far suppose that all the only interactions through indivduals arise

through the environment, shared by all the population, whatever the trait. This creates a global

interaction. In many cases this assumption is too restrictive. For instance predation is mostly

from larger individuals on smaller ones. Also, individuals that are characterized by closer traits

might use similar resources while very different individuals might use different foods.

These are the reasons to introduce local competitions. This creates a new and completely

different situation that we explain now. We begin with the non-local Fisher equation, a model

that can be interpreted both in terms of adaptive dynamics along with [57], or in terms of

ecology and make the relation to Turing patterns following [57].

Then we treat a more natural parabolic Lotka-Volterra model that we borrow from [78] along

with the analysis in [55].

6.1 The nonlocal Fisher equation; relation to Turing instability

As a simple nonlinear example to explain what is Turing instability, we consider the non-local

Fisher equation

∂

∂t
n− ν ∂

2

∂x2
n = r n(1−K ∗ n), t ≥ 0, x ∈ R, (6.1)

still with ν > 0, r > 0 given parameters and the convolution kernel K is a smooth probability

density function

K(·) ≥ 0,

∫
R
K(x)dx = 1, K ∈ L∞(R) (at least).



Figure 6.1: An example of tiger bush in Niger, see [72].

Compared to the Fisher equation it takes into account that competition for resources can be of

long range (the size of the support of K) and not just local.

It has been proposed in ecology as an improvment of the Fisher equation that takes into

account long range competition for resources [23, 61]. In semi-arid regions the roots of the

trees, in competition for water, can cover up ten times the external size of the tree itself (while

in temperate regions the ratio is roughly one to one). This leads to the so-called ’tiger bush’

lanscape [72], see Figure 6.1.

It has also been proposed as a simple model of adaptive evolution to take account for higher

competition between closer trait [57]; x represents a physiological trait, the Laplace term repre-

sents mutations and the right hand side growth and competition. The convolution kernel means

that competition between individuals of closer phenotypical traits is higher than between more

different traits.

The convolution term has a drastic effect on solutions; it can induce that solutions exhibit

a behavior quite different from those to the Fisher equation. The reason is mainly that the

maximum principle is lost with the non-local term. Again we notice that the steady state n ≡ 0

is unstable, that n � 1 is also unstable because it induces a strong decay. In one dimension,

for a general reaction function f(n) the conditions reads f(0) = 0, f ′(0) > 0 and f(n) < 0 for

n large; consequently there is a point n0 satisfying (generically) f(n0) = 0, f ′(n0) < 0, i.e. a

stable steady state should be in between the unstable ones. This is the case of the nonlinearities

arising in Fisher equation that we have encountered.

Here the steady state n ≡ 1 may satisfy a condition only possible because we have the variable

x at hand, namely

Definition 6.1 The steady state n0 ≡ 1 is called linearly unstable if there are perturbations of

n0 such that the linearized system has exponential growth in time.

Definition 6.2 A steady state n0 is said Turing unstable if

56



(i) it is between two unstable states as above (no blow-up, no extinction),

(ii) it is linearly unstable,

(iii) the corresponding growth modes are bounded (no high frequency oscillations).

Obviously when Turing instability occurs, solutions should exhibit strange behaviors because

they remain bounded away from the two extreme steady states, cannot converge to u0 and can-

not oscillate rapidly. In other words, they should exhibit Turing patterns. See Figure 6.2 for a

numerical solution to (6.1).

In practice, to check linear instability we use spectral functions. In compact domains the

concept can be handled using eigenfunctions of the Laplace operator as we see it later. On the

full line, we may use the generalized eigenfunctions which are the Fourier modes. We define the

Fourier transform as

û(ξ) =

∫
R
u(x)e−ix ξdx.

Theorem 6.3 Assume the condition

∃ξ0 such that K̂(ξ0) < 0, (6.2)

and ν/r small enough (depending on ξ0 and K(ξ0)), then the non-local Fisher equation (6.1) is

Turing unstable.

A practical consequence of this Theorem is that solutions should create so-caled Turing pat-

terns. This can easily be seen on numerical simulations, Figure 6.2.

Figure 6.2: Steady state solutions of the nonlocal Fisher equation (6.1) in 2 dimensions with

different diffusion coefficients.

Proof. (i) The state u ≡ 0 and u ≡ ∞ are clearly both unstable.

(ii) The linearized equation around n ≡ 1 is obtained setting n = 1 + ũ and keeping the first

order temrs, we obtain
∂

∂t
ũ− ν ∂

2

∂x2
ũ = −r K ∗ ũ.
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Figure 6.3: Rectangular kernel (6.8), ε = 10−4. Initial conditions are: 4 peaks evenly spaced

(left), 5 peaks evenly spaced (right). These are examples of ’smooth’ steady states.

And we look for solutions of the form ũ(t, x) = eλtv(x) with λ > 0. This means that we should

find eigenvectors associated with the positive eigenvalue λ to

λv − ν ∂
2

∂x2
v = −r K ∗ v.

We look for a possible Fourier mode v(x) = eix ξ1 that we insert in the previous equation. Then

we obtain the condition

λ+ νξ2
1 = −r K̂(ξ1), for some λ > 0. (6.3)

And it is indeed possible to such a λ and a ξ1 = ξ0 under the conditions of the Theorem.

(ii) The possible unstable modes ξ0 are obviously bounded because K̂ is bounded as the Fourier

transform of a L1 function.

6.2 The nonlocal Fisher equation; polymorphism

It is rather difficult to characterize the steady states solutions to (6.1) (and thus the long time

behaviour to the dynamics). However the case of small diffusion and the Hamilton-Jacobi

analysis, give a hint on the reason which solutions may exhibit polymorphisms (concentration

as several Dirac masses)

To do so we may follow [56] and consider the steady states

− ε2 ∂
2

∂x2
nε = nε(1−K ∗ nε), x ∈ R, (6.4)

and look for solutions that behaves as

nε −→
ε→0

I∑
i=1

%i δ(x− xi).
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We use again the ansatz

nε = e
ϕε
ε

and insert it in equation (6.4) to obtain

−ε ∂
2

∂x2
ϕε −

∣∣∣∣ ∂∂xϕε
∣∣∣∣2 = 1−K ∗ nε,

and in the limit (see section (5.4)), we arrive at
−
∣∣ ∂
∂xϕ

∣∣2 = 1−
∑I

i=1 %i K(x− xi),

maxx ϕ(x) = 0 = ϕ(xi) i = 1, ..., I.

(6.5)

We can draw immediate consequences. Because ∂
∂xϕ(xj) = 0, we have

I∑
i=1

%i K(xj − xi) = 1 j = 1, ..., I, (6.6)

this is the pessimization principle. And since

I∑
i=1

%i K(x− xi) ≥ 1, (6.7)

we also find, after differentiating equation (6.4), that the selection gradient vanishes at xj

I∑
i=1

%i K
′(xj − xi) = 1 j = 1, ..., I.

It is easy to see that the conditions (6.6)–(6.7) are enough to build a viscosity solution to

(6.5).

Example. Consider the case of the rectangular kernel

K(x) =
1

2b
1{|x|≤b}. (6.8)

This is the simplest example of a kernel generating Turing instability along with Section 6.2.

We see that many steady states are possible. The simplest is, for c ∈ [0, b), to reconstruction

the unit function as

%j = 1, xj = ac+ bj, ϕ = 0.

But one may pile-up two (or more) elementary blocs and use, for all d with b
2 < d < b,

%j = 1, xj = c+ dj, ϕ 6= 0.
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Figure 6.4: M-shape kernel (6.9) with a = 0.015, b = 0.15, ε = 10−4. Initial conditions are: 4

peaks evenly spaced (left), 5 peaks evenly spaced (right).

Many more steady states are easy to built (with %j = 1
2 for instance). The number and

diversity of these steady states explain that the dynamics is hardly predictable and long time

patterns can undergo high complexity. In particular smooth (uniformly in ε) steady states may

exist for rectangular kernels. See Figure 6.3 (borrowed from [56]) for a direct numerical solution

giving rise to this type of steady state.

Example. The case of M-shaped kernels

K(x) = K(0) (1 + a
|x|
b

) 1{|x|≤b},

∫
K = 1, (6.9)

seems to be give rise solely to Dirac concentrations in the limit ε→ 0 by opposition to rectangular

kernels. It also enters the class of kernels with Turing instability. The ’simple’ class of weights

and locations for the Dirac is now given, for c ∈ R, b
2 < d < b,

%j =
1

a
, xj = c+ dj, ϕ = 0.

Figure 6.4, still borrowed from [56]) shows numerical solutions that indeed concentration on

points according to this rule. Again several different steady states can be reached depending on

the initial data.

6.3 Continuous vs individual based models

In [99, 22] the authors pose clearly the question of finite size effects that create patterns when the

corresponding continuous model does not,it is (6.1) with a gaussian kernel. Because the Foruier

trnasform of a gaussian is still a gaussian and thus positive it cannot fulfill the instability

condition (6.2). See Figure 6.5.
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Figure 6.5: Time evolution of a population by an Individual Based Model. The gaussian kernel

used here does not allow for speciation in a continuous model. See [99, 22].

6.4 Survival thresholds

The population models we have considered so far have a bad property in terms of biological

observations. The density nε(t, x) has a tail which makes that for all x there are individuals

with this traits, even with low number. In favorable circumstances, it can increase very quickly

and create a new Dirac mass separated from the present population. This phenomenon has been

already observed on much simpler models in Section 5.3. This is irrealistic for several reasons;

one of them is that in practice there a limit of one individuals which settle a minimal density.

Another are statistical effects that make that small populations can die out due to external

events. The notion of demographic stochasticity is used in stochastic simulations to take into

account such effects. At the population level we may use the notion of surival thresholds as

introduced in [55]. This is a way to add an extra death rate that acts particularly strongly on

small populations and avoids the undesirable tails with too few individuals.

We consider now general differential models following [29, 75, 78]. More specifically we use

the so-called ’Lotka-Volterra’ model for intra-specific competition in a deterministic population,

with the selection term of the form
(
R(x) − (Kσ ∗ n(t, .))(x)

)
and the mutation term set as

ε2∆n(t, x). Incorporating the survival threshold, we get:

ε
∂

∂t
n(t, x) =

(
R(x)− (Kσ ∗ n(t, .))(x)

)
n(t, x)−

√
n̄ n(t, x) + ε2∆n(t, x). (6.10)

the meaning of the different terms is as follows.

• The first term of the selection, R(x), describes the density independent part of the invasion

exponent. A typical example, that we borrow from [78] and use in numerical solutions, is given
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Figure 6.6: Typical stochastic simulations of individuals based model of evolutionary dynamics

compatible with the population model (6.10). Different values of b have been chosen.

by

R(x) = 1− x2. (6.11)

• The square root enables the population to vanish for some traits when the population density

is too low, thus mimicking the extinction probability due to demographic stochasticity in small

sub-populations. At the extreme it means that we do not want to have densities corresponding

to less that one individual.

•The localized convolution kernel Kσ describes the competition between similar individuals in

terms of x. Typically, we choose it, still following [78], as a gaussian

Kσ(x) =
1√
2πσ

e−|x|
2/(2σ). (6.12)

The capability of the survival threshold (but certainly other modeling of demographic stochas-

ticity would do the same job) is shown in Figure 6.6 (stochastic simulations) and Figure 6.7

(deterministic simulations).
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Figure 6.7: Direct simultion of the population model (6.10). Different values of b have been

chosen.
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APPENDICES

.1 From population genetics to continuous models

Population genetics treats of the probality pi(t) to find a gene in a population and the discrete

aspect of genes is central. A simple an intrinsic way to derive the simplest equation is to consider

I genes (or species). The individuals with this gene have their own logistic growth rate ri ∈ R

dni(t)

dt
= rini(t), 1 ≤ i ≤ I.

We can now consider the propability to find the gene i in the total population

pi(t) =
ni(t)∑
j nj(t)

.

This simple example has the property that the pis satisfy a close system of coupled differential

equations

dpi(t)

dt
= pi(t)

(
ri −

I∑
j=1

rjpj(t)
)
, 1 ≤ i ≤ I.

The main asymptotic properties of this system are summarized in the

Lemma .4 For an initial data satisfying p0
j ≥ 0 then

I∑
j=1

p0
j = 1, then one has

I∑
j=1

pj(t) = 1 for

all times.

Assume additionally that the ri ∈ R are all different. Then as t→∞, we have

I∑
i=1

ripi(t)→ r̄ := max
1≤i≤I

ri = ri0 ,

pi(t)→ 0 for i such that ri < r̄, pi0(t)→ 1.

Proof. Indeed, we compute directly

d

dt

I∑
i=1

pi(t) =

I∑
j=1

rjpj(t) [1−
I∑
i=1

pi(t)],

which proves that (pi(t)) are probability measures.

Also, we compute using the Cauchy-Schwarz inequality

d

dt

I∑
i=1

ripi(t) =

I∑
i=1

r2
i pi(t)−

( I∑
i=1

ripi(t)
)2
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=
I∑
i=1

pi(t)
(
ri −

I∑
i=1

ripi(t)
)2 ≥ 0.

this proves that, as t→∞,
∑I

i=1 ripi(t)↘ r̃ for some limit that remains to identify.

The differential equation on pi yields directly r̃ = r̄, otherwise pi0 would have an exponential

growth which contradicts pi0 ≤ 1. The end of the proof follows clearly.

The continuous version of it enters the class given by (1.1)

∂n(t, x)

∂t
= n(t, x)

(
r(x)−

∫ ∞
0

r(y)n(t, y)
)
, x ≥ 0.

Assuming that the initial data is a probability measure, we also have∫ ∞
0

n(t, x)dx = 1, ∀t ≥ 0,

because
d

dt

∫ ∞
0

n(t, x)dx =

∫ ∞
0

r(x)n(t, x)dx
[
1−

∫ ∞
0

n(t, y)dy
]
.

.2 The replicator dynamics

A more elaborate model of gene propagation in a population is the replicator equation

dpi(t)

dt
= pi(t)

( I∑
j=1

aijpj(t)− Φ(t)
)
, Φ(t) =

I∑
i,j=1

aijpi(t)pj(t).

Again, it satisfies
I∑
i=1

pi(t) =
I∑
i=1

p0
i = 1

because

d

dt

I∑
i=1

pi(t) =

I∑
i,j=1

aijpi(t)pj(t)−
I∑
i=1

pi(t)Φ(t) = Φ(t)
(
1−

I∑
i=1

pi(t)
)
.

A remarquable property of this dynamics is that

dΦ(t)

dt
=

I∑
i,j=1

aij
dpi(t)

dt
pj(t) +

I∑
i,j=1

aijpi(t)
dpj(t)

dt

=
I∑

i,j=1

aijpi(t)pj(t)
( I∑
k=1

aikpk(t)− Φ(t)
)

+
I∑

i,j=1

aijpi(t)pj(t)
( I∑
k=1

ajkpk(t)− Φ(t)
)

=

I∑
i=1

pi(t)

 I∑
j=1

aijpj(t)

2

+

I∑
i=1

pi(t)

(
I∑

k=1

akipk(t)

)2

− 2Φ(t)2 ≥ 0
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thanks to the Cauchy-Schwarz inequality.

The continuous version is
∂n(t, x)

∂t
= n(t, x)

( ∫ ∞
0

a(x, y)n(t, y)dy − Φ(t)
)
, x ≥ 0,

Φ(t) =

∫ ∞
0

∫ ∞
0

a(x, y)n(t, y)n(t, x)dxdy,

which still describes a probability density∫ ∞
0

n(t, x)dx = 1, ∀t ≥ 0,

because

d

dt

∫ ∞
0

n(t, x)dx =

∫ ∞
0

∫ ∞
0

a(x, y)n(t, y)n(t, x)dxdy
[
1−

∫ ∞
0

n(t, x)dx
]
.

As in the discrete form, one has

dΦ(t)

dt
=

∫
n(t, x)

(∫
a(x, y)n(y, t)

)2

+

∫
n(t, x)

(∫
a(y, x)n(y, t)

)2

− 2Φ(t)2 ≥ 0.

The long time behaviour is much more complicated and diverse. See [66]. stable steady states

characterized by the ESS condition that there is Lagrange multiplier ϕ such that
∫
a(x, y)n(y, t) = ϕ for x ∈ supp(n),∫
a(x, y)n(y, t) ≤ ϕ.

.3 Interpolation of u̇ between u and ü

Proposition .5 For a function u ∈ C2(R) one has

|u̇(t)| ≤
(

sup
s≥t
|u(s)| sup

s≥t
|ü(s)|

)1/2

.

Proof. For any τ > 0,

u̇(t) = u̇(t+ τ)−
∫ t+τ

t
ü(s)ds.

For A > 0 to be chosen later, one has

Au̇(t) =

∫ A

0
u̇(t+ τ)dτ −

∫ A

0

∫ t+τ

t
ü(s)dsdτ.
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Consequently, one deduces

A|u̇(t)| ≤ |u(t+A)− u(t)|+
∫ A

0

∫ t+τ

t
|ü(s)|dsdτ,

A|u̇(t)| ≤ 2 sup
s≥t
|u(s)|+ sup

s≥t
|ü(s)|

∫ A

0

∫ t+τ

t
dsdτ,

|u̇(t)| ≤ 2

A
sup
s≥t
|u̇(s)|+ A

2
sup
s≥t
|ü(s)|.

The result follows choosing the optimal value of A in this inequality.
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[94] A. Potapov, U. E. Schlägel and M. A. Lewis. Evolutionary stable diffusive dispersal,

DCDS(B), 19(10), 2014, 3319–3340.

[95] C. Pouchol, J. Clairambault, A. Lorz, Alexander and E. Trélat. Asymptotic analysis and
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