Self-similar Markov processes Problems

§Exercise Set 1

ExERCISES

1. Suppose that X is a stable process in any dimension (including the case of a Brownian motion). Show that $|X|$ is a positive self-similar Markov process.
2. Suppose that B is a one-dimensional Brownian motion. Prove that

$$
\frac{B_{t}}{x} \mathbf{1}_{\left(\underline{B}_{t}>0\right)}, \quad t \geq 0,
$$

is a martingale, where $\underline{B}_{t}=\inf _{s \leq t} B_{s}$.
3. Suppose that X is a stable process with two-sided jumps

- Show that the range of the ascending ladder process H, say range (H) has the property that it is equal in law to $c \times$ range (H).
- Hence show that, up to a multiplicative constant, the Laplace exponent of H satisfies $k(\lambda)=\lambda^{\alpha_{1}}$ for $\alpha_{1} \in(0,1)$ (and hence the ascending ladder height process is a stable subordinator).
- Use the fact that, up to a multiplicative constant

$$
\Psi(z)=|\theta|^{\alpha}\left(\mathrm{e}^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta>0)}+\mathrm{e}^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta<0)}\right)=\hat{\kappa}(\mathrm{i} z) \kappa(-\mathrm{i} z)
$$

to deduce that

$$
\kappa(\theta)=\theta^{\alpha \rho} \text { and } \hat{\kappa}(\theta)=\theta^{\alpha \hat{\rho}} .
$$

and that $0<\alpha \rho, \alpha \hat{\rho}<1$

- What kind of process corresponds to the case that $\alpha \rho=1$?

ExERCISES

4. Suppose that $\left(X, \mathrm{P}_{x}\right), x>0$ is a positive self-similar Markov process and let $\zeta=\inf \left\{t>0: X_{t}=0\right\}$ be the lifetime of X. Show that $\mathrm{P}_{x}(\zeta<\infty)$ does not depend on x and is either 0 for all $x>0$ or 1 for all $x>0$.
5. Suppose that X is a symmetric stable process in dimension one (in particular $\rho=1 / 2)$ and that the underlying Lévy process for $\left|X_{t}\right| \mathbf{1}_{(t<\tau\{0\})}$, where $\tau^{\{0\}}=\inf \left\{t>0: X_{t}=0\right\}$, is written ξ. (Note the indicator is only needed when $\alpha \in(1,2)$ as otherwise X does not hit the origin.) Show that (up to a multiplicative constant) its characteristic exponent is given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+1)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+1-\alpha)\right)}, \quad z \in \mathbb{R} .
$$

[Hint!] Think about what happens after X first crosses the origin and apply the Markov property as well as symmetry. You will need to use the law of the overshoot of X below the origin given a few slides back.

EXERCISES

6. Use the previous exercise to deduce that the MAP exponent underlying a stable process with two sided jumps is given by

$$
\left[\begin{array}{cc}
-\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \hat{\rho}-z) \Gamma(1-\alpha \hat{\rho}+z)} & \frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \hat{\rho}) \Gamma(1-\alpha \hat{\rho})} \\
\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \rho) \Gamma(1-\alpha \rho)} & -\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \rho-z) \Gamma(1-\alpha \rho+z)}
\end{array}\right]
$$

for $\operatorname{Re}(z) \in(-1, \alpha)$.

Exercises Set 2

ExERCISES

1. Use the fact that the radial part of a d-dimensional $(d \geq 2)$ isotropic stable process has MAP (ξ, Θ), for which the first component is a Lévy process with characteristic exponent given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}, \quad z \in \mathbb{R} .
$$

to deduce the following facts:

- Irrespective of its point of issue, we have $\lim _{t \rightarrow \infty}\left|X_{t}\right|=\infty$ almost surely.

ExERCISES

1. Use the fact that the radial part of a d-dimensional $(d \geq 2)$ isotropic stable process has MAP (ξ, Θ), for which the first component is a Lévy process with characteristic exponent given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}, \quad z \in \mathbb{R} .
$$

to deduce the following facts:

- Irrespective of its point of issue, we have $\lim _{t \rightarrow \infty}\left|X_{t}\right|=\infty$ almost surely.
- By considering the roots of Ψ show that

$$
\exp \left((\alpha-d) \xi_{t}\right), \quad t \geq 0
$$

is a martingale.

- Deduce that

$$
\left|X_{t}\right|^{\alpha-d}, \quad t \geq 0,
$$

is a martingale.
2. Remaining in d-dimensions $(d \geq 2)$, recalling that

$$
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\circ}}{\mathrm{d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{\left|X_{t}\right|^{\alpha-d}}{|x|^{\alpha-d}}, \quad t \geq 0, x \neq 0
$$

show that under \mathbb{P}°, X is absorbed continuously at the origin in an almost surely finite time.

EXERCISES

3. Recall the following theorem

Theorem

Define the function

$$
g(x, y)=\pi^{-(d / 2+1)} \Gamma(d / 2) \sin (\pi \alpha / 2) \frac{\left|1-|x|^{2}\right|^{\alpha / 2}}{\left|1-|y|^{2}\right|^{\alpha / 2}}|x-y|^{-d}
$$

for $x, y \in \mathbb{R}^{d} \backslash \mathbb{S}_{d-1}$. Let

$$
\tau^{\oplus}:=\inf \left\{t>0:\left|X_{t}\right|<1\right\} \text { and } \tau_{a}^{\ominus}:=\inf \left\{t>0:\left|X_{t}\right|>1\right\}
$$

(i) Suppose that $|x|<1$, then

$$
\mathbb{P}_{x}\left(X_{\tau} \ominus \in \mathrm{d} y\right)=g(x, y) \mathrm{d} y, \quad|y| \geq 1
$$

(ii) Suppose that $|x|>1$, then

$$
\mathbb{P}_{x}\left(X_{\tau \oplus} \in \mathrm{d} y, \tau^{\oplus}<\infty\right)=g(x, y) \mathrm{d} y, \quad|y| \leq 1
$$

Prove (ii) (i.e. $|x|>1$) from the identity in (i) (i.e. $|x|<1$).

