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§1. Quick review of Lévy processes
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(KILLED) LÉVY PROCESS
I (ξt, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with

RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

I Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy–Khinchine formula

E[eiθ·ξt ] = e−Ψ(θ)t, θ ∈ Rd,

where,

Ψ(θ) = q + ia · θ +
1
2
θ · Aθ +

∫
Rd

(1− eiθ·x + i(θ · x)1(|x|<1))Π(dx),

where a ∈ R, A is a d× d Gaussian covariance matrix and Π is a measure
satisfying

∫
Rd (1 ∧ |x|2)Π(dx) <∞. Think of Π as the intensity of jumps in the

sense of
P(X has jump at time t of size dx) = Π(dx)dt + o(dt).

I In one dimension the path of a Lévy process can be monotone, in which case it is
called a subordinator and we work with the Laplace exponent

E[e−λξt ] = e−Φ(λ)t, t ≥ 0

where
Φ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.
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LÉVY PROCESS: ONE DIMENSION
Two examples in one dimension:
I Stable subordinator (ξt, t ≥ 0) is a subordinator which satisfies the additional

scaling property: For c > 0

under P, the law of (cξc−αt, t ≥ 0) is equal to P,

where α ∈ (0, 1). We have

Φ(λ) = λα, λ ≥ 0, and Π(dx) =
α

Γ(1− α)

1
x1+α

dx, x > 0.

I Hypgergeometric Lévy process: For β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β − iθ)
Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)
θ ∈ R.

The Lévy measure has a density with respect to Lebesgue measure which is given
by

π(x) =


−

Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1
(
1 + γ, η; η − γ̂; e−x) , if x > 0,

−
Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂.
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LÉVY PROCESS: ONE DIMENSION

I If ξ has a characteristic exponent Ψ then necessarily

Ψ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R.

where κ and κ̂ are Bernstein functions, e.g.

κ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.

I The factorisation has a physical interpretation:
I range of the κ-subordinator agrees with the range of sups≤t ξs, t ≥ 0
I range κ̂-subordinator agrees with the range of− infs≤t ξs, t ≥ 0.

I Note if δ > 0, then P(ξ
τ+x

= x) > 0, where τ+
x = inf{t > 0 : ξt > x}, x > 0.

I We have already seen the hypergeometric example

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β − iθ)
×

Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)
θ ∈ R.
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HITTING POINTS
I We say that ξ can hit a point x ∈ R if

P(ξt = x for at least one t > 0) > 0.

I Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))
Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if∫

R
Re
(

1
1 + Ψ(z)

)
dz <∞.

If the Kesten-Bretagnolle integral test is satisfied, then

P(τ{x} <∞) =
u(x)

u(0)
,

where τ{x} = inf{t > 0 : ξt = x}, providing we can compute the inversion

u(x) =

∫
c+iR

e−zx

Ψ(−iz)
dz

for some c ∈ R.
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§2. Self-similar Markov processes
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SELF-SIMILAR MARKOV PROCESSES (SSMP)

Definition
A regular strong Markov process (Zt : t ≥ 0) on Rd, with probabilities Px, x ∈ Rd, is a
rssMp if there exists an index α ∈ (0,∞) such that for all c > 0 and x ∈ Rd,

(cZtc−α : t ≥ 0) under Px is equal in law to (Zt : t ≥ 0) under Pcx.
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SOME OF YOUR BEST FRIENDS ARE SSMP

I WriteNd(0,Σ) for the Normal distribution with mean 0 ∈ Rd and correlation
(matrix) Σ. The moment generating function of Xt ∼ Nd(0,Σt) satisfies, for
θ ∈ Rd,

E[eθ·Xt ] = etθTΣθ/2 = e(c−2t)(cθ)TΣ(cθ)/2 = E[eθ·cXc−2 t ].

I Thinking about the stationary and independent increments of Brownian motion,
this can be used to show that Rd-Brownian motion: is a ssMp with α = 2.



10/ 66

§1. §2. §3. §4. §5. §6. Exercises.

SOME OF YOUR BEST FRIENDS ARE SSMP

I WriteNd(0,Σ) for the Normal distribution with mean 0 ∈ Rd and correlation
(matrix) Σ. The moment generating function of Xt ∼ Nd(0,Σt) satisfies, for
θ ∈ Rd,

E[eθ·Xt ] = etθTΣθ/2 = e(c−2t)(cθ)TΣ(cθ)/2 = E[eθ·cXc−2 t ].

I Thinking about the stationary and independent increments of Brownian motion,
this can be used to show that Rd-Brownian motion: is a ssMp with α = 2.



11/ 66

§1. §2. §3. §4. §5. §6. Exercises.

SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an R-Brownian motion:
I Write Xt := infs≤t Xs. Then (Xt,Xt), t ≥ 0 is a Markov process.

I For c > 0 and α = 2,(cXc−αt
cXc−αt

)
=
(c infs≤c−αt Xs

cXc−αt

)
=
(infu≤t cXc−αu

cXc−αt

)
, t ≥ 0,

and the latter is equal in law to (X,X), because of the scaling property of X.
I Markov process Zt := Xt − (−x ∧ Xt), t ≥ 0 is also a ssMp on [0,∞) issued from

x > 0 with index 2.
I Zt := Xt1(Xt>0), t ≥ 0 is also a ssMp, again on [0,∞).
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an Rd-Brownian motion:
I Consider Zt := |Xt|, t ≥ 0. Because of rotational invariance, it is a Markov process.
I Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|.

Note again, this is a ssMp on [0,∞).

I Note that |Xt|, t ≥ 0 is a Bessel-d process. It turns out that all Bessel processes, and
all squared Bessel processes are self-similar on [0,∞). Once can check this by e.g.
considering scaling properties of their transition semi-groups.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an Rd-Brownian motion:
I Note when d = 3, |Xt|, t ≥ 0 is also equal in law to a Brownian motion conditioned

to stay positive: i.e if we define, for a 1-d Brownian motion (Bt : t ≥ 0),

P↑x (A) = lim
s→∞

Px(A|Bt+s > 0) = Ex

[
Bt

x
1(Bt>0)1(A)

]
where A ∈ σ{Bt : u ≤ t}, then

(|Xt|, t ≥ 0) with |X0| = x is equal in law to (B,P↑x ).
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

I All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

I We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).

I All of the previous examples are functional transforms of Brownian motion and
have made use of the scaling and Markov properties and (in some cases) isotropic
distributional invariance.

I If we replace Brownain motion by an α-stable process, a Lévy process that has
scale invariance, then all of the functional transforms still produce new examples
of self-similar Markov processes.
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α-STABLE PROCESS

Definition
A Lévy process X is called (strictly) α-stable if it is also a self-similar Markov process.

I Necessarily α ∈ (0, 2]. [α = 2→ BM, exclude this.]
I The characteristic exponent Ψ(θ) := −t−1 logE(eiθXt ) satisfies

Ψ(θ) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)), θ ∈ R.

where ρ = P0(Xt ≥ 0) will frequently appear as will ρ̂ = 1− ρ
I Assume jumps in both directions (0 < αρ, αρ̂ < 1), so that the Lévy density takes

the form
Γ(1 + α)

π

1
|x|1+α

(
sin(παρ)1{x>0} + sin(παρ̂)1{x<0}

)
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I The characteristic exponent Ψ(θ) := −t−1 logE(eiθXt ) satisfies

Ψ(θ) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)), θ ∈ R.

where ρ = P0(Xt ≥ 0) will frequently appear as will ρ̂ = 1− ρ
I Assume jumps in both directions (0 < αρ, αρ̂ < 1), so that the Lévy density takes
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α-STABLE PROCESS

Ψ(θ) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)), θ ∈ R.

I Note that, for c > 0, c−αΨ(cθ) = Ψ(θ),

I which is equivalent to saying that cXc−αt =d Xt,
I which by stationary and independent increments is equivalent to saying

(cXc−αt, t ≥ 0) =d (Xt, t ≥ 0) when X0 = 0,

I or equivalently is equivalent to saying (cX(x)
c−αt

, t ≥ 0) =d (X(cx)
t , t ≥ 0), where we

have indicated the point of issue as an additional index.
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STABLE PROCESS PATH PROPERTIES

index jumps path recurrence/transience
α ∈ (0, 1) transient
ρ = 0 − monotone decreasing limt→∞ Xt = −∞

ρ = 1 + monotone increasing limt→∞ Xt =∞

ρ ∈ (0, 1) +,− bounded variation limt→∞ |Xt| =∞
α = 1 recurrent

ρ = 1
2 +,− unbounded variation lim supt→∞ |Xt| =∞,

lim inf t→∞ |Xt| = 0
α ∈ (1, 2) recurrent

αρ = 1 − unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

− lim inf t→∞ Xt = lim supt→∞ Xt =∞

αρ = α− 1 + unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

− lim inf t→∞ Xt = lim supt→∞ Xt =∞

αρ ∈ (α− 1, 1) +,− unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

− lim inf t→∞ Xt = lim supt→∞ Xt =∞
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§1. §2. §3. §4. §5. §6. Exercises.

YOUR NEW FRIENDS

Suppose X = (Xt : t ≥ 0) is within the assumed class of α-stable processes in
one-dimension and let Xt = infs≤t Xs.

Your new friends are:
I Z = X
I Z = X − (−x ∧ X), x > 0.
I Z = X1(X>0)

I Z = |X| providing ρ = 1/2

I What about Z =“X conditioned to stay positive"?
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CONDITIONED α-STABLE PROCESSES

I Recall that each Lévy processes, ξ = {ξt : t ≥ 0}, enjoys the Wiener-Hopf
factorisation i.e. up to a multiplicative constant, Ψξ(θ) := t−1 log E[eiθξt ] respects
the factorisation

Ψξ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R,

where κ and κ̂ are Bernstein functions. That is e.g. κ takes the form

κ(λ) = q + aλ+

∫
(0,∞)

(1− e−λx)ν(dx), λ ≥ 0

where ν is a measure satisfying
∫
(0,∞)(1 ∧ x)ν(dx) <∞.

I The probabilistic significance of these subordinators, is that their range
corresponds precisely to the range of the running maximum of ξ and of −ξ
respectively.

I In the case of α-stable processes, up to a multiplicative constant,

κ(λ) = λαρ and κ̂(λ) = λαρ̂, λ ≥ 0.
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CONDITIONED α-STABLE PROCESSES

I Associated to the descending ladder subordinator κ̂ is its potential measure Û,
which satisfies ∫

[0,∞)
e−λxÛ(dx) =

1
κ̂(λ)

, λ ≥ 0.

I It can be shown that for a Lévy process which satisfies lim supt→∞ ξt =∞, for
A ∈ σ(ξu : u ≤ t),

P↑x (A) = lim
s→∞

Px(A|Xt+s > 0) = Ex

[
Û(Xt)

Û(x)
1(Xt>0)1(A)

]
I In the α-stable case Û(x) ∝ xαρ̂

[Note in the excluded case that α = 2 and ρ = 1/2, i.e. Brownian motion,
Û(x) = x.]
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CONDITIONED α-STABLE PROCESSES

I For c, x > 0, t ≥ 0 and appropriately bounded, measurable and non-negative f , we
can write,

E↑x [f ({cXc−αs : s ≤ t})]

= E

f ({cX(x)
c−αs

: s ≤ t})
(X(x)

c−αt
)αρ̂

xαρ̂
1
(X(x)

c−αt
≥0)


= E

[
f ({X(cx)

s : s ≤ t}
(X(cx)

t )αρ̂

(cx)αρ̂
1
(X(cx)

t ≥0)

]
= E↑cx[f ({Xs : s ≤ t})].

I This also makes the process (X,P↑x ), x > 0, a self-similar Markov process on
[0,∞).

I Unlike the case of Brownian motion, the conditioned stable process does not have
the law of the radial part of a 3-dimensional stable process (the analogue to the
Brownian case).
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§3. Lamperti Transform
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NOTATION

I Use ξ := {ξt : t ≥ 0} to denote a Lévy process which is killed and sent to the
cemetery state −∞ at an independent and exponentially distributed random
time, eq, with rate in q ∈ [0,∞). The characteristic exponent of ξ is thus written

− log E(eiθξ1 ) = Ψ(θ) = q + Lévy–Khintchine

I Define the associated integrated exponential Lévy process

It =

∫ t

0
eαξs ds, t ≥ 0. (1)

and its limit, I∞ := limt↑∞ It.
I Also interested in the inverse process of I:

ϕ(t) = inf{s > 0 : Is > t}, t ≥ 0. (2)

As usual, we work with the convention inf ∅ =∞.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

Theorem (Part (i))
Fix α > 0. If Z(x), x > 0, is a positive self-similar Markov process with index of self-similarity
α, then up to absorption at the origin, it can be represented as follows. For x > 0,

Z(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)}, t ≥ 0,

where ζ(x) = inf{t > 0 : Z(x)
t = 0} and either

(1) ζ(x) =∞ almost surely for all x > 0, in which case ξ is a Lévy process
satisfying lim supt↑∞ ξt =∞,

(2) ζ(x) <∞ and Z(x)
ζ(x)−

= 0 almost surely for all x > 0, in which case ξ is a
Lévy process satisfying limt↑∞ ξt = −∞, or

(3) ζ(x) <∞ and Z(x)
ζ(x)−

> 0 almost surely for all x > 0, in which case ξ is a
Lévy process killed at an independent and exponentially distributed random
time.

In all cases, we may identify ζ(x) = xαI∞.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

Theorem (Part (ii))
Conversely, suppose that ξ is a given (killed) Lévy process. For each x > 0, define

Z(x)
t = x exp{ξϕ(x−αt)}1(t<xαI∞), t ≥ 0.

Then Z(x) defines a positive self-similar Markov process, up to its absorption time
ζ(x) = xαI∞, with index α.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

(Z,Px)x>0 pssMp

Zt = exp(ξS(t)),

S a random time-change

↔
(ξ,Py)y∈R killed Lévy

ξs = log(ZT(s)),

T a random time-change

Z never hits zero
Z hits zero continuously

Z hits zero by a jump

 ↔

 ξ →∞ or ξ oscillates
ξ → −∞
ξ is killed
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§4. Positive self-similar Markov processes
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

I The stable process cannot ‘creep’ downwards across the threshold 0 and so must
do so with a jump.

I This puts Z∗t := Xt1(Xt>0), t ≥ 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.

I Write ξ∗ = {ξ∗t : t ≥ 0} for the underlying Lévy process and denote its killing rate
by q∗.

I Let’s try and decode the characteristics of ξ∗.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)
I We know that the α-stable process experiences downward jumps at rate

Γ(1 + α)

π
sin(παρ̂)

1
|x|1+α

dx, x < 0.

I Given that we know the value of Z∗t−, on {Xt > 0}, the stable process will pass
over the origin at rate

Γ(1 + α)

π
sin(παρ̂)

(∫ ∞
Z∗t−

1
|x|1+α

dx

)
=

Γ(1 + α)

απ
sin(παρ̂)(Z∗t−)−α.

I On the other hand, the Lamperti transform says that on {t < ζ}, as a pssMp, Z is
sent to the origin at rate

q∗
d
dt
ϕ(t) = q∗e−αξ

∗
ϕ(t) = q∗(Z∗t )−α.

I Comparing gives us

q∗ = Γ(α)sin(παρ̂)/π =
Γ(α)

Γ(αρ̂)Γ(1− αρ̂)
.
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I We know that the α-stable process experiences downward jumps at rate

Γ(1 + α)

π
sin(παρ̂)

1
|x|1+α

dx, x < 0.

I Given that we know the value of Z∗t−, on {Xt > 0}, the stable process will pass
over the origin at rate

Γ(1 + α)

π
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1
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dx
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

I Referring again to the Lamperti transform, we know that, under P1 (so that ξ∗0 = 0
almost surely),

Z∗ζ− = X
τ−0 −

= e
ξ∗eq∗ ,

where eq∗ is an exponentially distributed random variable with rate q∗.

I This motivates the computation

E1[(Z∗ζ−)iθ] = E0[e
iθξ∗eq∗− ] =

q∗

(Ψ∗(z)− q∗) + q∗
, θ ∈ R,

where Ψ∗ is the characteristic exponent of ξ∗.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

Remembering the “overshoot-undershoot" distributional law at first passage (well
known in the literature for Lévy processes c.f. the quintuple law - Chapter 7 of my
book) and deduce that, for all v ∈ [0, 1],

P1(X
τ−0 −

∈ dv)

= P̂0(1− X
τ+1 −

∈ dv)

=
sin(αρ̂π)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

(∫ ∞
0

∫ ∞
0

1(y≤1∧v)
(1− y)αρ̂−1(v− y)αρ−1

(v + u)1+α
dudy

)
dv

=
sin(αρ̂π)

π

Γ(α)

Γ(αρ)Γ(αρ̂)

(∫ 1

0
1(y≤v)v−α(1− y)αρ̂−1(v− y)αρ−1dy

)
dv,

where P̂0 is the law of −X issued from 0.

Note: more generally (which you will need for an exercise later):

P1(−X
τ−0
∈ du, X

τ−0 −
∈ dv)

=
sin(αρ̂π)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

(∫ ∞
0

1(y≤1∧v)
(1− y)αρ̂−1(v− y)αρ−1

(v + u)1+α
dy
)

dvdu
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

We are led to the conclusion that

q∗
Ψ∗(θ)

=
sin(αρ̂π)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

∫ 1

0
(1− y)αρ̂−1

∫ ∞
0

1(y≤v)viθ−αρ̂−1
(

1−
y
v

)αρ−1
dvdy

=
sin(αρ̂π)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

∫ 1

0
(1− y)αρ̂−1yiθ−αρ̂dy

Γ(αρ̂− iθ)Γ(αρ)

Γ(α− iθ)

=
Γ(αρ̂− iθ)Γ(αρ)Γ(1− αρ̂+ iθ)Γ(αρ̂)Γ(α)

Γ(αρ)Γ(αρ̂)Γ(1− αρ̂)Γ(αρ̂)Γ(1 + iθ)Γ(α− iθ)
,

where in the first equality Fubini’s Theorem has been used, in the second equality a
straightforward substitution w = y/v has been used for the inner integral on the
preceding line together with the classical beta integral and, finally, in the third equality,
the Beta integral has been used for a second time. Inserting the respective values for
the constants q∗ and K, we come to rest at the following result:



33/ 66

§1. §2. §3. §4. §5. §6. Exercises.

STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

Theorem
For the pssMp constructed by killing a stable process on first entry to (−∞, 0), the underlying
killed Lévy process, ξ∗, that appears through the Lamperti transform has characteristic
exponent given by

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
, z ∈ R.



34/ 66

§1. §2. §3. §4. §5. §6. Exercises.

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

I Use the Lamperti representation of the α-stable process X to write, for
A ∈ σ(Xu : u ≤ t),

P↑x (A) = Ex

[
Xαρ̂t
xαρ̂

1(Xt>0)1(A)

]
= E0

[
eαρ̂ξ

∗
τ 1(τ<eq∗ )1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration of ξ∗.

I Noting that Ψ∗(−iαρ̂) = 0, the change of measure constitutes an Esscher
transform at the level of ξ∗.

Theorem
The underlying Lévy process, ξ↑, that appears through the Lamperti transform applied to
(X,P↑x ), x > 0,has characteristic exponent given by

Ψ↑(z) =
Γ(αρ− iz)

Γ(−iz)

Γ(1 + αρ̂+ iz)

Γ(1 + iz)
, z ∈ R.

I In particular Ψ↑(z) = Ψ∗(z− iαρ̂), z ∈ R so that Ψ↑(0) = 0 (i.e. no killing!)

I One can also check by hand that Ψ↑′(0+) = E0[ξ↑1 ] > 0 so that limt→∞ ξ↑t =∞.
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DID YOU SPOT THE OTHER ROOT?
I In essence, the case of the stable process conditioned to stay positive boils down to

an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
I It was important that we identified a root of Ψ∗(z) = 0 in order to avoid involving

a ‘time component’ of the Esscher transform.

I However, there is another root of the equation

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
= 0,

namely z = −i(1− αρ̂).
I And this means that

e(1−αρ̂)ξ∗ , t ≥ 0,

is a unit-mean Martingale, which can also be used to construct an Esscher
transform:

Ψ↓(z) = Ψ∗(z− i(1− αρ̂)) = Ψ↓(z) =
Γ(1 + αρ− iz)

Γ(1− iz)

Γ(iz + αρ̂)

Γ(iz)
.

I The choice of notation is pre-emptive since we can also check that Ψ↓(0) = 0 and
Ψ↓′(0) < 0 so that if ξ↓ is a Lévy process with characteristic exponent Ψ↓, then
limt→∞ ξ↓t = −∞.
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REVERSE ENGINEERING

I What now happens if we define for A ∈ σ(Xu : u ≤ t),

P↓x (A) = E0

[
e(1−αρ̂)ξ∗τ 1(τ<eq∗ )1(A)

]
= Ex

[
X(1−αρ̂)

t

x(1−αρ̂) 1(Xt>0)1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration of ξ∗.

I In the same way we checked that (X,P↑x ), x > 0, is a pssMp, we can also check
that (X,P↓x ), x > 0 is a pssMp.

I In an appropriate sense, it turns out that (X,P↓x ), x > 0 is the law of a stable
process conditioned to continuously approach the origin from above.
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ξ∗, ξ↑ AND ξ↓

I The three examples of pssMp offer quite striking underlying Lévy processes
I Is this exceptional?
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CENSORED STABLE PROCESSES

I Start with X, the stable process.

I Let At =
∫ t

0 1(Xt>0) dt.

I Let γ be the right-inverse of A, and put Žt := Xγ(t).

I Finally, make zero an absorbing state: Zt = Žt1(t<T0) where

T0 = inf{t > 0 : Xt = 0}.

Note T0 <∞ a.s. if and only if α ∈ (1, 2) and otherwise T0 =∞ a.s.
I This is the censored stable process.
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CENSORED STABLE PROCESSES

Theorem
Suppose that the underlying Lévy process for the censored stable process is denoted by

 
ξ . Then

 
ξ is equal in law to ξ∗∗ ⊕ ξC, with
I ξ∗∗ equal in law to ξ∗ with the killing removed,
I ξC a compound Poisson process with jump rate q∗ = Γ(α)sin(παρ̂)/π.

Moreover, the characteristic exponent of
 
ξ is given by

 
Ψ (z) =

Γ(αρ− iz)

Γ(−iz)

Γ(1− αρ+ iz)

Γ(1− α+ iz)
, z ∈ R.
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THE RADIAL PART OF A STABLE PROCESS

I Suppose that X is a symmetric stable process, i.e ρ = 1/2.
I We know that |X| is a pssMp.

Theorem
Suppose that the underlying Lévy process for |X| is written ξ, then it characteristic exponent is
given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + 1))

Γ( 1
2 (iz + 1− α))

, z ∈ R.
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HYPERGEOMETRIC LÉVY PROCESSES (REMINDER)

Definition (and Theorem)
For (β, γ, β̂, γ̂) in{

β ≤ 2, γ, γ̂ ∈ (0, 1) β̂ ≥ −1, and 1− β + β̂ + γ ∧ γ̂ ≥ 0
}

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy
process, having the characteristic function

Ψ(z) =
Γ(1− β + γ − iz)

Γ(1− β − iz)

Γ(β̂ + γ̂ + iz)

Γ(β̂ + iz)
z ∈ R.

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

π(x) =


−

Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1
(
1 + γ, η; η − γ̂; e−x) , if x > 0,

−
Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂, for |z| < 1, 2F1(a, b; c; z) :=
∑

k≥0
(a)k(b)k
(c)kk! zk.
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§5. Entrance Laws
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STARTING FROM ZERO

I We have carefully avoided the issue of talking about pssMp issued from the
origin.

I This should ring alarm bells when we look at the Lamperti transform

Z(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)} = exp{ξϕ(x−αt) + log x}, t ≥ 0,

I On the one hand log x ↓ −∞, which is the point of issue of ξ, but

ϕ(x−αt) = inf{s > 0 :

∫ s

0
eα(ξu+log x)du > t},

meaning that we are sampling the Lévy process over a longer and longer time
horizon.

I We know that 0 is an absorbing point, but it might also be an entrance point (can
it be both?).

I We know that some of our new friends have no problem using the origin as an
entrance point, e.g. |X|, where X is an α-stable process (or Brownian motion).

I We know that some of our new friends have no problem using the origin as an
entrance point, but also a point of recurrence, e.g. X − X, where X is an α-stable
process (or Brownian motion).
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I We know that 0 is an absorbing point, but it might also be an entrance point (can
it be both?).

I We know that some of our new friends have no problem using the origin as an
entrance point, e.g. |X|, where X is an α-stable process (or Brownian motion).

I We know that some of our new friends have no problem using the origin as an
entrance point, but also a point of recurrence, e.g. X − X, where X is an α-stable
process (or Brownian motion).
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STARTING FROM ZERO

I We want to find a way to give a meaning to “P0 := limx↓0 Px”.

I Could look at behaviour of the transition semigroup of Z as its initial value tends
to zero. That is to say, to consider whether the weak limit below is well defined:

P0(Zt ∈ dy) := lim
x↓0

Px(Zt ∈ dy), t, y > 0.

I In that case, for any sequence of times 0 < t1 ≤ t2 ≤ · · · ≤ tn <∞ and
y1, · · · , yn ∈ (0,∞), n ∈ N, the Markov property gives us

P0(Zt1 ∈ dy1, · · · ,Ztn ∈ dyn)

:= lim
x↓0

Px(Zt1 ∈ dy1, · · · ,Ztn ∈ dyn)

= lim
x↓0

Px(Zt1 ∈ dy1)Py1 (Zt2−t1 ∈ dy2, · · · ,Ztn−t2 ∈ dyn)

= P0(Zt1 ∈ dy1)Py1 (Zt2−t1 ∈ dy2, · · · ,Ztn−t2 ∈ dyn).

When the limit exists, it implies the existence of P0 as limit of Px as x ↓ 0, in the
sense of convergence of finite-dimensional distributions.
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STARTING FROM ZERO

I We would like a stronger sense of convergence e.g. we would like

E0[f (Zs : s ≤ t)] := lim
x→0

Ex[f (Zs : s ≤ t)]

for an appropriate measurable function on cadlag paths of length t.

I The right setting to discuss distributional convergence is with respect to so-called
Skorokhod topology.

I ROUGHLY: There is a metric on cadlag path space which does a better job of
measuring how “close" two paths are than e.g. the uniform functional metric.

I This metric induces a topology (the Skorokhod topology). From this topology, we
build a measurable space around the space of cadlag paths.

I Think of Px, x > 0 as a family of measures on this space and we want weak
convergence “P0 := limx→0 Px” on this space.
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STARTING FROM ZERO

Theorem
Suppose that (ξ,Px), x ∈ R is the Lévy process (not a compound Poisson process) underlying
the pssMp (Z,Px), x > 0. The limit P0 := limx→0 Px exists in the sense of convergence with
respect to the Skorokhod topology if and only if E0(H+

1 ) <∞ (H+ is the ascending ladder
process of ξ). Under the assumption that E(ξ1) > 0, for any positive measurable function f and
t > 0,

E0(f (Zt)) =
1

−αÊ0(ξ1)
Ê0

(
1

I∞
f

((
t

I∞

)1/α
))

,

where I∞ =
∫∞

0 eαξt dt and (ξ, P̂0) is equal in law to (−ξ,P0).
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RECURRENT EXTENSION

I The previous construction has insisted that Z is a pssMp with ζ =∞ a.s. But what
about the case that ζ <∞ a.s.

I We can say something about the case that ζ <∞ a.s. and Xζ− = 0.

I A cadlag strong Markov process,
→
Z := {

→
Z t: t ≥ 0}with probabilities {

→
Px, x ≥ 0},

is a recurrent extension of Z if, for each x > 0, the origin is not an absorbing state
→
P x-almost surely and {

→
Z

t∧
→
ζ

: t ≥ 0} under
→
P x has the same law as (Z,Px), where

→
ζ = inf{t > 0 :

→
Zt= 0}.

Theorem
If ζ <∞ a.s. and Xζ− = 0, then there exists a unique recurrent extension of Z which leaves 0
continuously if and only if there exists a β ∈ (0, α) such

E0(eβξ1 ) = 1.

Here, as usual, α is the index of self-similarity.
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§6. Real valued self-similar Markov processes
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I So far we only spoke about [0,∞).

I What can we say about R-valued self-similar Markov processes.
I This requires us to first investigate Markov Additive (Lévy) Processes
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MARKOV ADDITIVE PROCESSES (MAPS)

I E is a finite state space
I (J(t))t≥0 is a continuous-time, irreducible Markov chain on E
I process (ξ, J) in R× E is called a Markov additive process (MAP) with probabilities

Px,i, x ∈ R, i ∈ E, if, for any i ∈ E, s, t ≥ 0: Given {J(t) = i},

(ξ(t + s)− ξ(t), J(t + s)) d
= (ξ(s), J(s)) with law P0,i.
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PATHWISE DESCRIPTION OF A MAP

The pair (ξ, J) is a Markov additive process if and only if, for each i, j ∈ E,
I there exist a sequence of iid Lévy processes (ξn

i )n≥0

I and a sequence of iid random variables (Un
ij)n≥0, independent of the chain J,

I such that if T0 = 0 and (Tn)n≥1 are the jump times of J,
the process ξ has the representation

ξ(t) = 1(n>0)(ξ(Tn−) + Un
J(Tn−),J(Tn)) + ξn

J(Tn)(t− Tn),

for t ∈ [Tn,Tn+1), n ≥ 0.
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CHARACTERISTICS OF A MAP

I Denote the transition rate matrix of the chain J by Q = (qij)i,j∈E.
I For each i ∈ E, the Laplace exponent of the Lévy process ξi will be written ψi

(when it exists).

I For each pair of i, j ∈ E with i 6= j, define the Laplace transform Gij(z) = E(ezUij ) of
the jump distribution Uij (when it exists).

I Otherwise define Ui,i ≡ 0, for each i ∈ E.
I Write G(z) for the N × N matrix whose (i, j)th element is Gij(z).
I Let

Ψ(z) = diag(ψ1(z), . . . , ψN(z)) + Q ◦ G(z),

(when it exists), where ◦ indicates elementwise multiplication.
I The matrix exponent of the MAP (ξ, J) is given by

E0,i(ezξ(t); J(t) = j) =
(
eΨ(z)t)

i,j, i, j ∈ E,

(when it exists).
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DUAL MAP
I Thanks to irreducibility, the Markov chain J necessarily has a stationary

distribution. We denote it by the vector π = (π1, · · · , πN).

I Each MAP has a dual process, also a MAP, with probabilities P̂x,i, x ∈ R, i ∈ E,
determined by the dual characteristic matrix exponent (when it exists),

Ψ̂(z) := diag
(
−Ψ1(−z), · · · ,−ΨN(−z)

)
+ Q̂ ◦ G(−z)T,

where Q̂ is the time-reversed Markov chain J,

q̂i,j =
πj

πi
qj,i, i, j ∈ E.

Note that the latter can also be written Q̂ = ∆−1
π QT∆π , where ∆π = diag(π).

I When it exists,
Ψ̂(z) = ∆−1

π Ψ(−z)T∆π ,

showing that

πiÊ0,i

[
eizξt , Jt = j

]
= πjE0,j

[
e−izξt , Jt = i

]
.

Lemma
The time-reversed process (

(
ξ(t−s)− − ξt, J(t−s)−

)
, s ≤ t) under P0,π is equal in law to

((ξs, Js), s ≤ t) under P̂0,π .



54/ 66

§1. §2. §3. §4. §5. §6. Exercises.

LAMPERTI-KIU TRANSFORM

I Take J to be irreducible on E = {1,−1}.

I Let
Zt = |x|eξ(τ(|x|−αt))J(τ(|x|−αt)) 0 ≤ t < T0,

where

τ(t) = inf

{
s > 0 :

∫ s

0
exp(αξ(u))du > t

}
and

T0 = |x|−α
∫ ∞

0
eαξ(u)du.

I Then Zt is a real-valued self-similar Markov process in the sense that the law of
(cZtc−α : t ≥ 0) under Px is Pcx.

I The converse (within a special class of rssMps) is also true.
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ENTRANCE AT ZERO

I Given the Lamperti-Kiu representation

Zt = eξ(τ(|x|−αt))+log |x|J(τ(|x|−αt)) 0 ≤ t < T0,

it is clear that we can think of a similar construction from zero to the case of
pssMp.

I We need to construct a stationary version of the pair (ξ, J) which is indexed by R
and pinned at space-time point (−∞,∞).

I Just like the theory of Lévy processes, by observing the range of the process (ξt, Jt)

t ≥ 0, only at the points of its new suprema, we see a process (H+
t , J

+
t ), t ≥ 0,

which is also a MAP, where H+ is has increasing paths.
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ENTRANCE AT ZERO

Theorem
Assume that Z is a conservative real self-similar Markov process. Moreover, suppose that the
MAP ((ξ,Θ),P), associated with Z through the Lamperti-Kiu transform, is such that ξ is not
concentrated on a lattice and its ascending ladder height process H which satisfies
E0,π(H1) <∞. Then P0 := limx↓0 Px exists, in the sense of convergence of on the Skorokhod
space, under which Z leaves the origin continuously. Conversely, if E0,π(H1) =∞, then this
limit does not exist. Under the additional assumption that E0,π(ξ1) > 0, for any positive
measurable function f and t > 0,

E0(f (Zt)) =
1

−αÊ0,π(ξ1)

∑
i=±1

πiÊ0,i

(
1

I∞
f

(
i
(

t
I∞

)1/α
))

, (3)

where I∞ =
∫∞

0 exp{αξs}ds, and Êx,i, x ∈ R, i = ±1.
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AN α-STABLE PROCESS IS A RSSMP

I An α-stable process up to absorption in the origin is a rssMp.
I When α ∈ (0, 1], the process never hits the origin a.s.

I When α ∈ (1, 2), the process is absorbs at the origin a.s.
I The matrix exponent of the underlying MAP is given by:

−
Γ(α− z)Γ(1 + z)

Γ(αρ̂− z)Γ(1− αρ̂+ z)

Γ(α− z)Γ(1 + z)

Γ(αρ̂)Γ(1− αρ̂)

Γ(α− z)Γ(1 + z)

Γ(αρ)Γ(1− αρ)
−

Γ(α− z)Γ(1 + z)

Γ(αρ− z)Γ(1− αρ+ z)

 ,
for Re(z) ∈ (−1, α). Note a matrix A in this context is arranged with the ordering(

A1,1 A1,−1
A−1,1 A−1,−1

)
.
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AN α-STABLE PROCESS IS A RSSMP

I An α-stable process up to absorption in the origin is a rssMp.
I When α ∈ (0, 1], the process never hits the origin a.s.
I When α ∈ (1, 2), the process is absorbs at the origin a.s.

I The matrix exponent of the underlying MAP is given by:
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ESSCHER TRANSFORM FOR MAPS

I If Ψ(z) is well defined then it has a real simple eigenvalue χ(z), which is larger
than the real part of all its other eigenvalues.

I Furthermore, the corresponding right-eigenvector v(z) = (v1(z), · · · , vN(z)) has
strictly positive entries and may be normalised such that π · v(z) = 1.

Theorem
Let Gt = σ{(ξ(s), J(s)) : s ≤ t}, t ≥ 0, and

Mt := eγξ(t)−χ(γ)t vJ(t)(γ)

vi(γ)
, t ≥ 0,

for some γ ∈ R such that χ(γ) is defined. Then, Mt, t ≥ 0, is a unit-mean martingale.
Moreover, under the change of measure

dPγ0,i
∣∣∣
Gt

= Mt dP0,i
∣∣
Gt
, t ≥ 0,

the process (ξ, J) remains in the class of MAPs with new exponent given by

Ψγ(z) = ∆v(γ)−1Ψ(z + γ)∆v(γ)− χ(γ)I.

Here, I is the identity matrix and ∆v(γ) = diag(v(γ)).
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ESSCHER AND DRIFT

I Suppose that χ is defined in some open interval D of R, then, it is smooth and
convex on D.

I Since Ψ(0) = −Q, if, moreover, J is irreducible, we always have χ(0) = 0 and
v(0) = (1, · · · , 1). So 0 ∈ D and χ′(0) is well defined and finite.

I With all of the above

lim
t→∞

ξt

t
= χ′(0) a.s.
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ESSCHER AND THE STABLE-MAP

I For the MAP that underlies the stable process D = (−1, α), it can be checked that
detΨ(α− 1) = 0 i.e. χ(α− 1) = 0, which makes

Ψ◦(z) = ∆−1Ψ(z + α− 1)∆

=


−

Γ(1− z)Γ(α+ z)

Γ(1− αρ− z)Γ(αρ+ z)

Γ(1− z)Γ(α+ z)

Γ(αρ)Γ(1− αρ)

Γ(1− z)Γ(α+ z)

Γ(αρ̂)Γ(1− αρ̂)
−

Γ(1− z)Γ(α+ z)

Γ(1− αρ̂− z)Γ(αρ̂+ z)

 ,

where ∆ = diag(sin(παρ̂), sin(παρ)).

I When α ∈ (0, 1), χ′(0) > 0 (because the stable process never touches the origin
a.s.) and Ψ◦(z)-MAP drifts to −∞

I When α ∈ (1, 2), χ′(0) < 0 (because the stable process touches the origin a.s.) and
Ψ◦(z)-MAP drifts to +∞.
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RIESZ-BOGDAN-ZAK TRANSFORM

Theorem (Riesz–Bogdan–Zak transform)
Suppose that X is an α-stable process as outlined in the introduction. Define

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0.

Then, for all x ∈ R\{0}, (−1/Xη(t))t≥0 under Px is equal in law to (X,P◦−1/x), where

dP◦x
dPx

∣∣∣∣
Ft

=

(
sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(Xt)

sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(x)

) ∣∣∣∣Xt

x

∣∣∣∣α−1
1(t<τ{0})

and Ft := σ(Xs : s ≤ t), t ≥ 0. Moreover, the process (X,P◦x ), x ∈ R\{0} is a self-similar
Markov process with underlying MAP via the Lamperti-Kiu transform given by Ψ◦(z).
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WHAT IS THE Ψ◦-MAP?

Thinking of the affect on the long term behaviour of the underlying MAP of the
Esscher transform
I When α ∈ (0, 1), (X,P◦x ), x 6= 0 has the law of the the stable process conditioned

to absorb continuously at the origin in the sense,

P◦y (A) = lim
a→0

Py(A, t < T0 | τ(−a,a) <∞),

for A ∈ Ft = σ(Xs, s ≤ t),
τ(−a,a) = inf{t > 0 : |Xt| < a} and T0 = inf{t > 0 : Xt = 0}.

I When α ∈ (1, 2), (X,P◦x ), x 6= 0 has the law of the stable process conditioned to
avoid the origin in the sense

P◦y (A) = lim
s→∞

Py(A |T0 > t + s),

for A ∈ Ft = σ(Xs, s ≤ t) and T0 = inf{t > 0 : Xt = 0}.
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EXERCISES

1. Suppose that X is a stable process in any dimension (including the case of a
Brownian motion). Show that |X| is a positive self-similar Markov process.

2. Suppose that B is a one-dimensional Brownian motion. Prove that

Bt

x
1(Bt>0), t ≥ 0,

is a martingale, where Bt = infs≤t Bs.

3. Suppose that X is a stable process with two-sided jumps
I Show that the range of the ascending ladder process H, say range(H) has the property

that it is equal in law to c× range(H).
I Hence show that, up to a multiplicative constant, the Laplace exponent of H satisfies

k(λ) = λα1 for α1 ∈ (0, 1) (and hence the ascending ladder height process is a stable
subordinator).

I Use the fact that, up to a multiplicative constant

Ψ(z) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)) = κ̂(iz)κ(−iz)

to deduce that
κ(θ) = θ

αρ and κ̂(θ) = θ
αρ̂
.

and that 0 < αρ, αρ̂ < 1
I What kind of process corresponds to the case that αρ = 1?
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EXERCISES

4. Suppose that (X,Px), x > 0 is a positive self-similar Markov process and let
ζ = inf{t > 0 : Xt = 0} be the lifetime of X. Show that Px(ζ <∞) does not
depend on x and is either 0 for all x > 0 or 1 for all x > 0.

5. Suppose that X is a symmetric stable process in dimension one (in particular
ρ = 1/2) and that the underlying Lévy process for |Xt|1(t<τ{0}), where

τ{0} = inf{t > 0 : Xt = 0}, is written ξ. (Note the indicator is only needed when
α ∈ (1, 2) as otherwise X does not hit the origin.) Show that (up to a
multiplicative constant) its characteristic exponent is given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + 1))

Γ( 1
2 (iz + 1− α))

, z ∈ R.

[Hint!] Think about what happens after X first crosses the origin and apply the
Markov property as well as symmetry. You will need to use the law of the
overshoot of X below the origin given a few slides back.
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EXERCISES

6. Use the previous exercise to deduce that the MAP exponent underlying a stable
process with two sided jumps is given by

−
Γ(α− z)Γ(1 + z)

Γ(αρ̂− z)Γ(1− αρ̂+ z)

Γ(α− z)Γ(1 + z)

Γ(αρ̂)Γ(1− αρ̂)

Γ(α− z)Γ(1 + z)

Γ(αρ)Γ(1− αρ)
−

Γ(α− z)Γ(1 + z)

Γ(αρ− z)Γ(1− αρ+ z)

 ,
for Re(z) ∈ (−1, α).
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