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Self-similar Markov processes
Part I: One dimension

Andreas Kyprianou
University of Bath

A more thorough set of lecture notes can be found here:
https://arxiv.org/abs/1707.04343
Other related material found here
https://arxiv.org/abs/1511.06356
https://arxiv.org/abs/1706.09924
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(KILLED) LEVY PROCESS

> (&,t > 0) is a (killed) Lévy process if it has stationary and independents with
RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

4/ 66



§1. §2. §3. §4. §5. §6. Exercises.
@000 0000000000000 0000 0000000000000 0 00000 0000000000000 0 000
I

(KILLED) LEVY PROCESS

> (&,t > 0) is a (killed) Lévy process if it has stationary and independents with
RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

> Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy-Khinchine formula

E[el?¢] = e YOt 6 e RY,
where,

1 )
WO =g-+ia-0+ 20-A0+ [ (1= 40210 1)),
R

where a € R, A is ad x d Gaussian covariance matrix and II is a measure
satisfying [Lq(1 A |x|?)II(dx) < co. Think of IT as the intensity of jumps in the
sense of

P(X has jump at time ¢ of size dx) = IT(dx)dt 4 o(dt).
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(KILLED) LEVY PROCESS

> (&,t > 0) is a (killed) Lévy process if it has stationary and independents with
RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

> Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy-Khinchine formula
E[el?¢] = e YOt 6 e RY,

where,
V() =q+ia-60+ %9 SA0 + / (1— € +i(0 - x)1(jyj<1))T(dx),
R4

where a € R, A is ad x d Gaussian covariance matrix and II is a measure
satisfying [Lq(1 A |x|?)II(dx) < co. Think of IT as the intensity of jumps in the
sense of
P(X has jump at time ¢ of size dx) = IT(dx)dt 4 o(dt).
> In one dimension the path of a Lévy process can be monotone, in which case it is
called a subordinator and we work with the Laplace exponent

Ele 2] = e 2 t>0
where

Q(N) =g+ A+ / (1—e M)T(dx), A>0.
(0,00)
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LEVY PROCESS: ONE DIMENSION
Two examples in one dimension:

> Stable subordinator (&, ¢ > 0) is a subordinator which satisfies the additional
scaling property: For ¢ > 0

under P, the law of (c§,—a,t > 0) is equal to P,
where a € (0,1). We have

x> 0.

— \« = L 1
DN =2, A>0, and  II(dx) = T(1l—a) dte dx,
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LEVY PROCESS: ONE DIMENSION
Two examples in one dimension:
> Stable subordinator (&, ¢ > 0) is a subordinator which satisfies the additional
scaling property: For ¢ > 0

under P, the law of (¢{,—a,,t > 0) is equal to PP,
where a € (0,1). We have

1
BN =X%  A20,  and  I(dy) = & x> 0.

Y gy,
(1—a)xita
> Hypgergeometric Lévy process: For 8 < 1,7 € (0,1), 3> 0,4 € (0,1)

¥(6) = I(1—B4~v—1i0) T(3+74 + i)
T TA-8-i0)  T(B+i0)

The Lévy measure has a density with respect to Lebesgue measure which is given

0 € R.

by
'(n) —(1—B+)x et g
=€ oF1 (T+vy,mn—%e "), if x>0,
T'(n—H)T(—) ( )
m(x) =
T'(n) (B+4)x ; x ;
—— e 2Fr (1 +4,mm — v e'), if x <0,
L(n—yI(=9)
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LEVY PROCESS: ONE DIMENSION
> If € has a characteristic exponent ¥ then necessarily
V(0) = rk(—if)k(i0), 0eR.
where k and & are Bernstein functions, e.g.
A>0.

K(\) =g+ X+ /(0 )(1 — e MY (dy),
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LEVY PROCESS: ONE DIMENSION

> If € has a characteristic exponent ¥ then necessarily
V() = w(—if)A(i0), 0eR.

where x and & are Bernstein functions, e.g.
K(\) =g+ 0A +/ (1—e"™)T(dx), A>0.
(0,00)

> The factorisation has a physical interpretation:
> range of the r-subordinator agrees with the range of sup,<; &, t > 0
> range k-subordinator agrees with the range of — infs<; &, t > 0.

6/ 66



§1. §2. §3. §4. §5. §6. Exercises.
[e]e] o) 0000000000000 0000 0000000000000 0 00000 0000000000000 0 000
I

LEVY PROCESS: ONE DIMENSION

> If € has a characteristic exponent ¥ then necessarily
V() = w(—if)A(i0), 0eR.

where x and & are Bernstein functions, e.g.
K(\) =g+ 0A +/ (1—e"™)T(dx), A>0.
(0,00)

> The factorisation has a physical interpretation:
> range of the r-subordinator agrees with the range of sup,<; &, t > 0
> range k-subordinator agrees with the range of — infs<; &, t > 0.

> Noteif § > 0, then P(§_+ =x) >0, where " = inf{t > 0:& > x},x > 0.
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LEVY PROCESS: ONE DIMENSION

> If € has a characteristic exponent ¥ then necessarily
V() = w(—if)A(i0), 0eR.

where x and & are Bernstein functions, e.g.
n@):q+5A+/l (1—e ™T(dx), A>0.
(0,00)

> The factorisation has a physical interpretation:
> range of the r-subordinator agrees with the range of sup,<; &, t > 0
> range k-subordinator agrees with the range of — infs<; &, t > 0.

> Noteif § > 0, thenP(§ 4 = x) > 0, where T =inf{t>0:& > x},x > 0.

> We have already seen the hypergeometric example

w(o)= DA —B+7-i6) LB +4 +i6)
T r(1-B-if) (3 + i6)
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HITTING POINTS
> We say that & can hit a point x € R if

P(& = x for atleast one t > 0) > 0.
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HITTING POINTS
> We say that & can hit a point x € R if

P(& = x for atleast one t > 0) > 0.

> Creeping is one way to hit a point, but not the only way
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HITTING POINTS
> We say that & can hit a point x € R if
P(& = x for atleast one t > 0) > 0.
> Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))

Suppose that £ is not a compound Poisson process. Then & can hit points if and only if

/H;Re (%\P(Z)) dz < co.

If the Kesten-Bretagnolle integral test is satisfied, then

P(ri < o0) = %,

N3

where 7{} = inf{t > 0 : & = x}, providing we can compute the inversion

e—ZX d
u(x) = z
®) /c+i]R W(—iz)
7/ 66
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§2. Self-similar Markov processes
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SELF-SIMILAR MARKOV PROCESSES (SSMP)

Definition
A regular strong Markov process (Z; : t > 0) on RY, with probabilities Py, x € RY, isa
rssMp if there exists an index a € (0, 00) such that for all ¢ > 0 and x € RY,

(¢Zy—a : t > 0) under Py is equal in law to (Z; : t > 0) under P,.
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SOME OF YOUR BEST FRIENDS ARE SSMP

> Write N;(0, %) for the Normal distribution with mean 0 € R and correlation
(matrix) 3. The moment generating function of X; ~ A (0, Xt) satisfies, for
0 R,
E[e"'Xf] _ etGTEG/Z _ e(c_zt)(CB)TE(CQ)/Z _ E[e"'cxrzx].

10/ 66



§1. §2. §3. §4 §5. §6 Exercises.

0000 0O®00000000000 0000 0000000000000 0 00000 0000000000000 0 000
I

SOME OF YOUR BEST FRIENDS ARE SSMP

> Write N;(0, %) for the Normal distribution with mean 0 € R and correlation
(matrix) 3. The moment generating function of X; ~ N (0, 3t) satisfies, for
6 € RY,
E[eo-x,] _ etGTEG/Z _ e(c_zt)(CG)TE(CQ)/Z _ E[e9'Cszf],

» Thinking about the stationary and independent increments of Brownian motion,
this can be used to show that R?-Brownian motion: is a ssMp with o = 2.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R-Brownian motion:
> Write X, := infs<; Xs. Then (X}, X,), t > 0 is a Markov process.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R-Brownian motion:
> Write X, := infs<; Xs. Then (X}, X,), t > 0 is a Markov process.
» Forc>0and a =2,

(C&—at) _ (cinfsgc_ath) _ (inqutCXC_au) £>0
X —ayp X —ayp cXo—ayp ’ -

and the latter is equal in law to (X, X), because of the scaling property of X.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R-Brownian motion:
> Write X, := infs<; Xs. Then (X}, X,), t > 0 is a Markov process.
» Forc>0and a =2,
(c&_at) _ (cinfsgc_ath> _ (inqutCXC—au) £>0
X —ayp X —ayp cXo—ayp ’ -
and the latter is equal in law to (X, X), because of the scaling property of X.

> Markov process Z; := X; — (—x A X,), t > 0 is also a ssMp on [0, co) issued from
x > 0 with index 2.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R-Brownian motion:
> Write X, := infs<; Xs. Then (X}, X,), t > 0 is a Markov process.
» Forc>0and a =2,
(c&_at) _ (c infsgc_at X5> _ (infugt CXC—au) £>0
X —ayp X —ayp cXo—ayp ’ -
and the latter is equal in law to (X, X), because of the scaling property of X.

> Markov process Z; := X; — (—x A X,), t > 0 is also a ssMp on [0, co) issued from
x > 0 with index 2.

> 7= Xfl(&>0)/ t > 0is also a ssMp, again on [0, o).
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R?-Brownian motion:
> Consider Z; := |X;|, t > 0. Because of rotational invariance, it is a Markov process.

> Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X].
Note again, this is a ssMp on [0, c0).
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R?-Brownian motion:
> Consider Z; := |X;|, t > 0. Because of rotational invariance, it is a Markov process.

> Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X].
Note again, this is a ssMp on [0, c0).

> Note that |X;|, t > 01is a Bessel-d process. It turns out that all Bessel processes, and
all squared Bessel processes are self-similar on [0, 00). Once can check this by e.g.
considering scaling properties of their transition semi-groups.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R*-Brownian motion:

> Note whend = 3, |X;|, t > 01is also equal in law to a Brownian motion conditioned
to stay positive: i.e if we define, for a 1-d Brownian motion (B; : t > 0),

. By
PI(4) = lim Pr(AlB,, > 0) = Ex {;1@90)1@1)]
where A € o{B; : u < t}, then

(IX¢|,t > 0) with | Xp| = x is equal in law to (B,]P’;).
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

> All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

> All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

> We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

> All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

> We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).

> All of the previous examples are functional transforms of Brownian motion and
have made use of the scaling and Markov properties and (in some cases) isotropic
distributional invariance.
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

> All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

> We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).

> All of the previous examples are functional transforms of Brownian motion and
have made use of the scaling and Markov properties and (in some cases) isotropic
distributional invariance.

> If we replace Brownain motion by an a-stable process, a Lévy process that has
scale invariance, then all of the functional transforms still produce new examples
of self-similar Markov processes.

14/ 66
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«a-STABLE PROCESS

Definition
A Lévy process X is called (strictly) a-stable if it is also a self-similar Markov process.
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«a-STABLE PROCESS

Definition
A Lévy process X is called (strictly) a-stable if it is also a self-similar Markov process.

> Necessarily « € (0,2]. [« =2 — BM, exclude this.]

15/ 66



§1. 8§2. §3. §4. §5. §6. Exercises.
0000 000000e000000 0000 0000000000000 0 00000 0000000000000 0 000

a-STABLE PROCESS

Definition
A Lévy process X is called (strictly) a-stable if it is also a self-similar Markov process.

> Necessarily « € (0,2]. [« =2 — BM, exclude this.]
> The characteristic exponent ¥ (6) := —t~!log E(el?X) satisfies
T(0) = [0]" (€M1 (pug) + e TGP y),  HER.

where p = Po(X; > 0) will frequently appearas will p =1 — p
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a-STABLE PROCESS

Definition
A Lévy process X is called (strictly) a-stable if it is also a self-similar Markov process.

> Necessarily « € (0,2]. [« =2 — BM, exclude this.]

> The characteristic exponent ¥ (6) := —t~!log E(el?X) satisfies

T(0) = [0]" (€M1 (pug) + e TGP y),  HER.

where p = Po(X; > 0) will frequently appearas will p =1 — p

> Assume jumps in both directions (0 < ap, ap < 1), so that the Lévy density takes
the form
'l4+a) 1

- W (sin(wap)l{x>0} + sin(ﬂ'aﬁ)l{x<0})
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«a-STABLE PROCESS

W(9) = [6]* (€GP pog) +e TG, ),  HER.

> Note that, forc > 0, c=*¥(cd) = ¥(0),
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«a-STABLE PROCESS

W(9) = [6]* (€GP pog) +e TG, ),  HER.

> Note that, forc > 0, c=*¥(cd) = ¥(0),
> which is equivalent to saying that X, o, = X;,
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«a-STABLE PROCESS

W(9) = [6]* (€GP pog) +e TG, ),  HER.

> Note that, forc > 0, c=*¥(cd) = ¥(0),
> which is equivalent to saying that X, o, = X;,

> which by stationary and independent increments is equivalent to saying
(Xe—apt > 0) =4 (X¢,t > 0) when Xy = 0,
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a-STABLE PROCESS

W(9) = [6]* (€GP pog) +e TG, ),  HER.

> Note that, forc > 0, c=*¥(cd) = ¥(0),
which is equivalent to saying that cX.—o; =7 X;,

v

> which by stationary and independent increments is equivalent to saying
(Xe—apt > 0) =4 (X¢,t > 0) when Xy = 0,

> or equivalently is equivalent to saying (CXC(X) t>0) =* (Xt(cx) ,t > 0), where we

—ayp

have indicated the point of issue as an additional index.
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STABLE PROCESS PATH PROPERTIES
[ index [ jumps ]| path [ recurrence/ transience
ac (0,1) transient
p=0 — monotone decreasing lim;_ oo Xf = —c0
p=1 + monotone increasing limy 00 Xp = 0
p € (0,1) +, — bounded variation limy o0 |Xi| = 00
a=1 recurrent
L lim su |Xi] = oo
_1 _ Pt oo |4t )
pP=3 +, unbounded variation lim infrs e [Xe| = 0
o€ (1,2) recurrent
ap =1 — unbounded variation Pi(ri < o0)=1,x€R,
—liminf;, o X; = limsup,_, . X; = oo
- Py (710 =1 R
ap=o—1 + unbounded variation x(7 < ) X ER,
—liminf;, o X; = limsup,_, ., X; = oo
- Po(r{ < o0) =1,x € R,
ap € (« —1,1) | +,— | unbounded variation —lim inf, o X; = lim sup, X, = oo
[eS] - — 00 _
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YOUR NEW FRIENDS

Suppose X = (X; : t > 0) is within the assumed class of a-stable processes in
one-dimension and let X, = inf,<; X;.

Your new friends are:

> 7Z=X
> Z=X-(—xAX),x>0.
> Z:Xl(z>0)

» Z = |X| providing p = 1/2
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YOUR NEW FRIENDS

Suppose X = (X; : t > 0) is within the assumed class of a-stable processes in
one-dimension and let X, = inf,<; X;.

Your new friends are:
P Z=X
P Z=X—-(—xAX),x>0.
> Z=X1x>0
» Z = |X| providing p = 1/2
> What about Z =“X conditioned to stay positive"?
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CONDITIONED «-STABLE PROCESSES

> Recall that each Lévy processes, § = {{; : t > 0}, enjoys the Wiener-Hopf
factorisation i.e. up to a multiplicative constant, W¢(6) := ¢! log E[el?¢] respects
the factorisation
Ve (0) = k(—10)k(10), 0 cR,

where x and & are Bernstein functions. That is e.g. « takes the form
KO\ = g+ aA+ / (1—e (), A>0
(0,00)

where v is a measure satisfying |, (0,00) (I Ax)v(dy) < oo.
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CONDITIONED «-STABLE PROCESSES

> Recall that each Lévy processes, § = {{; : t > 0}, enjoys the Wiener-Hopf
factorisation i.e. up to a multiplicative constant, W¢(6) := ¢! log E[el?¢] respects
the factorisation
Ve (0) = k(—10)k(10), 0 cR,

where x and & are Bernstein functions. That is e.g. « takes the form

n(A)=q+a)\+/

(1—e Mup(dx), A>0
(0,00)
where v is a measure satisfying |, (0,00) (I Ax)v(dy) < oo.

> The probabilistic significance of these subordinators, is that their range
corresponds precisely to the range of the running maximum of £ and of —¢
respectively.
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CONDITIONED «-STABLE PROCESSES

> Recall that each Lévy processes, § = {{; : t > 0}, enjoys the Wiener-Hopf
factorisation i.e. up to a multiplicative constant, W¢(6) := ¢! log E[el?¢] respects
the factorisation
Ve (0) = k(—10)k(10), 0 cR,

where x and & are Bernstein functions. That is e.g. « takes the form
K(\) = 4+ aA + / (1—e (), A>0
(0,00)

where v is a measure satisfying |, (0,00) (I Ax)v(dy) < oo.

> The probabilistic significance of these subordinators, is that their range
corresponds precisely to the range of the running maximum of £ and of —¢
respectively.

> In the case of a-stable processes, up to a multiplicative constant,

k(A) =A% and A(A) = A, A >0.
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CONDITIONED «-STABLE PROCESSES

> Associated to the descending ladder subordinator # is its potential measure U,
which satisfies

e MU(dy) = !

, A>0.
[0,00) R(A)
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CONDITIONED «-STABLE PROCESSES

> Associated to the descending ladder subordinator # is its potential measure U,
which satisfies

- 1
e MU(dx) = —, A>0.
[0,00) R(A)
> It can be shown that for a Lévy process which satisfies lim sup,_, ., & = oo, for
Aco(&u:u<t),

U(x
2ix) 1(xt>o>1(A>]

T — 1 _
Py (A) = Jim Pr(A|X 1 > 0) = Ex aw)
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CONDITIONED «-STABLE PROCESSES

> Associated to the descending ladder subordinator # is its potential measure U,
which satisfies 1
e MU(dy) = ——, A>0.
[0,00) R(A)
> It can be shown that for a Lévy process which satisfies lim sup,_, ., & = oo, for
Aco(&u:u<t),

U(xy)

1<xt>o>1(A>]

T — 1 _
Py (A) = Jim Pr(A|X 1 > 0) = Ex aw)

> In the a-stable case U(x) o< x*P
[Note in the excluded case that & = 2 and p = 1/2, i.e. Brownian motion,
U(x) = x]
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CONDITIONED «-STABLE PROCESSES

> Forc,x > 0,t > 0 and appropriately bounded, measurable and non-negative f, we
can write,

]El[f({cxc—o‘s -S S t})]
( x® yoh

c— ot

[f({CX(x) e t})w1<Xf’i’a,>o>]

(X(Cx))aﬁ

(ex) .
E |[f({X;" :s <t} (cx)oP l(Xt(cx)>0):|

=ELF({Xs 15 < 1)),
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CONDITIONED «-STABLE PROCESSES

> Forc,x > 0,t > 0 and appropriately bounded, measurable and non-negative f, we
can write,

]El[f({cxc—o‘s -S S t})]

® yap

X0 yes
_ @ (X =y
_E[f({cx”%'sgt}) s 1<xﬁ’i’a,>o>]

(x(%))op

= (cx)ap >o>}

FUX s <ty

=ELF({Xs 15 < 1)),

> This also makes the process (X, P!), x > 0, a self-similar Markov process on
[0, 00).
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CONDITIONED «-STABLE PROCESSES

> Forc,x > 0,t > 0 and appropriately bounded, measurable and non-negative f, we
can write,

El[f({cxc—as 5 S t})]

(x) 5
X&) yan
_ O (X oy
- [ﬂ{cxf% 5 < t}>}msl<x§i’a,>o>]

(x(%))op

= (cx)ap >o>}

FUX s <ty

=ELIf({Xs :s < 1)
> This also makes the process (X, P!), x > 0, a self-similar Markov process on
[0, 00).
> Unlike the case of Brownian motion, the conditioned stable process does not have

the law of the radial part of a 3-dimensional stable process (the analogue to the
Brownian case).
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§3. Lamperti Transform
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NOTATION

> Use & := {& : t > 0} to denote a Lévy process which is killed and sent to the
cemetery state —oo at an independent and exponentially distributed random
time, e;, with rate in g € [0, c0). The characteristic exponent of £ is thus written

—log E(e'%1) = W() = g + Lévy—Khintchine
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NOTATION

> Use & := {& : t > 0} to denote a Lévy process which is killed and sent to the
cemetery state —oo at an independent and exponentially distributed random
time, e;, with rate in g € [0, c0). The characteristic exponent of £ is thus written

—log E(e'%1) = W() = g + Lévy—Khintchine

> Define the associated integrated exponential Lévy process

t
It:/ e®Sds,  t>0. 1)
0

and its limit, loo := lim¢poo It
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NOTATION

> Use & := {& : t > 0} to denote a Lévy process which is killed and sent to the
cemetery state —oo at an independent and exponentially distributed random
time, e;, with rate in g € [0, c0). The characteristic exponent of £ is thus written

—log E(e'%1) = W() = g + Lévy—Khintchine

> Define the associated integrated exponential Lévy process

t
It:/ e®Sds,  t>0. 1)
0

and its limit, loo := lim¢poo It

> Also interested in the inverse process of I:
p(t) =inf{s > 0: [ > t}, t>0. 2)

As usual, we work with the convention inf ) = co.
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LAMPERTI TRANSFORM FOR POSITIVE ssMp

Theorem (Part (i))

Fix a > 0. IfZW), x > 0, is a positive self-similar Markov process with index of self-similarity
o, then up to absorption at the origin, it can be represented as follows. For x > 0,

Zf(X)l(t<C(x)) = xexp{ggp(x—‘lt)}’ t 2 07

where () = inf{t >0 : Zt(x) = 0} and either

(1) ¢ = oo almost surely for all x > 0, in which case € is a Lévy process
satisfying lim supyy. o, § = 00,

(2) ¢® < coand Zé’;i) = Oalmost surely for all x > 0, in which case { is a
Lévy process satisfying limyy o, § = —o0, or

(vy_ > Oalmost surely for all x > 0, in which case § is a

Lévy process killed at an independent and exponentially distributed random
time.

(3) ¢® < coand Zéx)

In all cases, we may identify C(") = X% o.
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LAMPERTI TRANSFORM FOR POSITIVE ssMp

Theorem (Part (ii))
Conversely, suppose that & is a given (killed) Lévy process. For each x > 0, define

Zt(x) = xexp{ﬁw(xfat) }1(t<x°‘100)7 t> 0.

Then Z) defines a positive self-similar Markov process, up to its absorption time
((") = X% oo, with index a.
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LAMPERTI TRANSFORM FOR POSITIVE ssMp

(Z,Px)x>0 pssMp (&, Py)yeR killed Lévy
“
Zy = exp(&s(r)), & =log(Zr(s)),
S arandom time-change T arandom time-change
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LAMPERTI TRANSFORM FOR POSITIVE ssMp

(Z,Px)x>0 pssMp (&,Py)ycr killed Lévy
“
Zy = exp(&s(r)), & =log(Zr(s)),
S arandom time-change T arandom time-change

Z hits zero continuously
Z hits zero by a jump

£ — —o0

Z never hits zero
£ is killed

{ & — oo or £ oscillates
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§4. Positive self-similar Markov processes
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STABLE PROCESS KILLED ON ENTRY TO (—o0,0)

> The stable process cannot ‘creep’” downwards across the threshold 0 and so must
do so with a jump.
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STABLE PROCESS KILLED ON ENTRY TO (—o0,0)

> The stable process cannot ‘creep’” downwards across the threshold 0 and so must
do so with a jump.

> This puts Z] := X1 X,>0)/ t > 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.
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STABLE PROCESS KILLED ON ENTRY TO (—o0,0)

> The stable process cannot ‘creep’” downwards across the threshold 0 and so must
do so with a jump.

> This puts Z] := X1 X,>0)/ t > 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.

> Write £* = {£ : t > 0} for the underlying Lévy process and denote its killing rate
by g*.
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STABLE PROCESS KILLED ON ENTRY TO (—o0,0)

> The stable process cannot ‘creep’” downwards across the threshold 0 and so must
do so with a jump.

> This puts Zi' := X1(x,~0), t > 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.

> Write £* = {£ : t > 0} for the underlying Lévy process and denote its killing rate
by q*.
> Let’s try and decode the characteristics of £*.
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> We know that the a-stable process experiences downward jumps at rate

r
fd+a) sin(waﬁ)Hde, x < 0.
X @
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> We know that the a-stable process experiences downward jumps at rate

I'l+ a)

sin(rap) dx, x < 0.

|x|1+a

> Given that we know the value of Z; , on {X, > 0}, the stable process will pass
over the origin at rate

LA+ Gn(rap) (/ T dx> = P02 G rap)(zi )
iy Z

x|+ ar

s
t—
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> We know that the a-stable process experiences downward jumps at rate

rl+a)

sin(rap) dx, x < 0.

|x|1+a

> Given that we know the value of Z; , on {X, > 0}, the stable process will pass
over the origin at rate

@ sin(rap) </ZoO |x|11+a dx) -t sin(map)(Zi_) ™.

[e %y

s
t—

> On the other hand, the Lamperti transform says that on {t < ¢}, as a pssMp, Z is
sent to the origin at rate

*d % —at’ s 7R\ —
g et =g7e "0 = g7 (zp) ™"
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STABLE PROCESS KILLED ON ENTRY TO (—00, 0)

> We know that the a-stable process experiences downward jumps at rate

rl+a)

sin(rap) dx, x < 0.

|x|1+a

> Given that we know the value of Z; , on {X, > 0}, the stable process will pass
over the origin at rate

LA+ Gn(rap) (/ T dx> = T02D) G map) (i)
iy Z

x|+ o

s
t—

> On the other hand, the Lamperti transform says that on {t < ¢}, as a pssMp, Z is
sent to the origin at rate

* d * * * *\ —
g et =g7e "0 = g7 (zp) ™"
> Comparing gives us

I'(a)

7" = (a)sin(rap)/m = C(ap)D(1— ap)’
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STABLE PROCESS KILLED ON ENTRY TO (—o0,0)

> Referring again to the Lamperti transform, we know that, under P; (so that 5 = 0
almost surely),

ZZ— =X _ :eéeq*’
TO -

where e, is an exponentially distributed random variable with rate g*.
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STABLE PROCESS KILLED ON ENTRY TO (—o0,0)

> Referring again to the Lamperti transform, we know that, under P; (so that 5 = 0
almost surely),

ZZ— =X _ :eéeq*’
TO -

where e, is an exponentially distributed random variable with rate g*.

> This motivates the computation
i 0 . — q*
Ei[(Z; ) =Eple " )= — -t 0 eR,
¢ (U*(2) —g%) +q*

where W* is the characteristic exponent of £*.
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STABLE PROCESS KILLED ON ENTRY TO (—00, 0)

Remembering the “overshoot-undershoot” distributional law at first passage (well
known in the literature for Lévy processes c.f. the quintuple law - Chapter 7 of my
book) and deduce that, for allv € [0,1],

]P)] (X7'7 _ S dU)
0
=Py(1-X_+_€do)
1

sin(apm) T'(a+1) (/oo /oo 1oer (1 —y)*r= (v —y)or—1 dud}/) do
0 0 y=1n0)
1

m  T(ap)I'(ap) (v + u)tte

sin(apm '« N

where P is the law of —X issued from 0.
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STABLE PROCESS KILLED ON ENTRY TO (—00,0)

Remembering the “overshoot-undershoot” distributional law at first passage (well
known in the literature for Lévy processes c.f. the quintuple law - Chapter 7 of my
book) and deduce that, for allv € [0,1],

]P)] (X7'7 _ S dU)
0

=Py(1 - X € do)

_ sin(apm) T'(a+1) (/oo /oo 1oer (1 —y)*r= (v —y)or—1 dud}/) do
0 0 y=1n0)
1

w T(ap)T(ap) (0w
_ sin(apm) T'(a)
m T(ap)T(ap)

( /O 1y<oyo (1 =y)* (o - y)“”‘ldy) do,
where P is the law of —X issued from 0.
Note: more generally (which you will need for an exercise later):
P(—X - e€du, X - €do)
TD TO —

sin(apm) T(a+1) ( /°° 1—y)2h=1(y — y)ar—1 )
= 1
©  D(ap)D(ap) \Jo S0 @t u)ite dy | dodu
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STABLE PROCESS KILLED ON ENTRY TO (—00,0)

We are led to the conclusion that
g
v (6)

sin(apm) T'(a+1) /1 51 /°° i0—ap—1 ( 3/)04)71
= 1—y)*P 1 O I dod
7 T(ap)T(ap) Jo =) o =07 v o

sin(apr) Tlat1) [ e T(ap—i0)T(ap)
= S g Jy (L
_ T(ap—i0)P(ap)T(1 — ap +iO)T(ap)T(a)

T(ap)T(ap)T (1 — ap)L(ap)T(1 +i0) (o — i0)’

where in the first equality Fubini’s Theorem has been used, in the second equality a
straightforward substitution w = y/v has been used for the inner integral on the
preceding line together with the classical beta integral and, finally, in the third equality,
the Beta integral has been used for a second time. Inserting the respective values for
the constants g* and K, we come to rest at the following result:
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STABLE PROCESS KILLED ON ENTRY TO (—o0,0)

Theorem

For the pssMp constructed by killing a stable process on first entry to (—oo, 0), the underlying
killed Lévy process, £*, that appears through the Lamperti transform has characteristic
exponent given by

W (2) = I —iz) I'(1+iz)

= , eR.
Top—iz) T(1—aptiz)
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STABLE PROCESSES CONDITIONED TO STAY POSITIVE

> Use the Lamperti representation of the a-stable process X to write, for
AEO’(Xuiugt),

ap

b'e .
Pl(A) = Ex [,;,31<xf>0>1(A>] =E [e“’”s’l(me,,*)lm)] ;

where 7 = @(x~“t) is a stopping time in the natural filtration of £*.
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STABLE PROCESSES CONDITIONED TO STAY POSITIVE

> Use the Lamperti representation of the a-stable process X to write, for
AcoXy:u<t),

XoP .
Pl(A) = Ex [xf.l,sl<xf>0>1(A>] =E [e""’s’l(meq*)lm)] ;

where 7 = @(x~“t) is a stopping time in the natural filtration of £*.

> Noting that ¥*(—iap) = 0, the change of measure constitutes an Esscher
transform at the level of £*.
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STABLE PROCESSES CONDITIONED TO STAY POSITIVE
> Use the Lamperti representation of the a-stable process X to write, for
AcoXy:u<t),

XoP .
Pl(A) = Ex [xﬁ.l,al<xf>0>1m>] =E [ea”g’1<7<eq*>1<A)] ;

where 7 = @(x~“t) is a stopping time in the natural filtration of £*.

> Noting that ¥*(—iap) = 0, the change of measure constitutes an Esscher
transform at the level of £*.

Theorem
The underlying Lévy process, &1, that appears through the Lamperti transform applied to

(X, P1), x > 0,has characteristic exponent given by

_ TI(ap—iz) P14 ap +iz)
R e v e VT

s z € R.

> In particular ¥7(z) = U*(z — iap), z € R so that ¥T(0) = 0 (i.e. no killing!)
> One can also check by hand that U1/(0+) = Eg [§1T] > 0 so that lim;—, oo §tT = oo.
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DID YOU SPOT THE OTHER ROOT?

> In essence, the case of the stable process conditioned to stay positive boils down to
an Esscher transform in the underlying (Lamperti-transformed) Lévy process.

> It was important that we identified a root of ¥*(z) = 0 in order to avoid involving
a ‘time component’ of the Esscher transform.
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DID YOU SPOT THE OTHER ROOT?

> In essence, the case of the stable process conditioned to stay positive boils down to
an Esscher transform in the underlying (Lamperti-transformed) Lévy process.

> It was important that we identified a root of ¥*(z) = 0 in order to avoid involving
a ‘time component’ of the Esscher transform.

> However, there is another root of the equation
MNa—iz) T'(1+iz)

VO = S Ta—apr) O

namely z = —i(1 — ap).
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DID YOU SPOT THE OTHER ROOT?

>

>

In essence, the case of the stable process conditioned to stay positive boils down to
an Esscher transform in the underlying (Lamperti-transformed) Lévy process.

It was important that we identified a root of ¥*(z) = 0 in order to avoid involving
a ‘time component’ of the Esscher transform.

However, there is another root of the equation
MNa—iz) T'(1+iz)

VO = S Ta—apr) O

namely z = —i(1 — ap).
And this means that
e(l—aﬁ)&*7 t>0,

is a unit-mean Martingale, which can also be used to construct an Esscher
transform:

(14 ap —iz) I'(iz + ap)

W) = W (e (1 - ) = W) = e s
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DID YOU SPOT THE OTHER ROOT?

>

>

In essence, the case of the stable process conditioned to stay positive boils down to
an Esscher transform in the underlying (Lamperti-transformed) Lévy process.

It was important that we identified a root of ¥*(z) = 0 in order to avoid involving
a ‘time component’ of the Esscher transform.

However, there is another root of the equation
MNa—iz) T'(1+iz)

VO = S Ta—apr) O

namely z = —i(1 — ap).
And this means that
e(l—aﬁ)@’ t>0,

is a unit-mean Martingale, which can also be used to construct an Esscher
transform:

I'1+4 ap —iz) ['(iz + ap)

W) = W (e (1 - ) = W) = e s

The choice of notation is pre-emptive since we can also check that ¥+ (0) = 0 and
T+ (0) < 050 that if £ is a Lévy process with characteristic exponent W+, then

lims o0 £t¢ = —o0.
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REVERSE ENGINEERING

» What now happens if we define for A € (X, : u < t),

X(lf‘llf’)

. _ 1—ap)E: _ t
PHA) = Eo [P, o 10| = Ex x(l—aﬁ)1<X¢>0>1<A>} )

where 7 = p(x~%t) is a stopping time in the natural filtration of £*.
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REVERSE ENGINEERING

» What now happens if we define for A € (X, : u < t),

X(lf‘l/f’)

PHA) = Eo [P, o 10| = Ex MHX»O)RA)} )

where 7 = p(x~%t) is a stopping time in the natural filtration of £*.

> In the same way we checked that (X, IP’I), x > 0, is a pssMp, we can also check
that (X, IP’,%), x > 01is a pssMp.
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REVERSE ENGINEERING

» What now happens if we define for A € (X, : u < t),

X(lf‘l/f’)

PHA) = Eo [P, o 10| = Ex MHX»O)RA)} )

where 7 = p(x~%t) is a stopping time in the natural filtration of £*.

> In the same way we checked that (X, IP’,T), x > 0, is a pssMp, we can also check
that (X, IP’,%), x > 01is a pssMp.

> In an appropriate sense, it turns out that (X, P¥), x > 0 is the law of a stable
process conditioned to continuously approach the origin from above.
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&, & aND ¢

> The three examples of pssMp offer quite striking underlying Lévy processes

> Is this exceptional?
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CENSORED STABLE PROCESSES

> Start with X, the stable process.

> LetA; = fot 1(x,>0) dt.

> Let v be the right-inverse of A, and put Z; := X0

> Finally, make zero an absorbing state: Z; = Ztl(t<T0) where
To = inf{t > 0: X; = 0}.

Note Ty < oo a.s. if and only if o € (1,2) and otherwise Ty = oo a.s.

v

This is the censored stable process.
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CENSORED STABLE PROCESSES

Theorem -
Suppose that the underlying Lévy process for the censored stable process is denoted by & . Then

€ is equal in law to £* @ €€, with
> & equal in law to £* with the killing removed,
> ¢C a compound Poisson process with jump rate ¢* = T'(a)sin(wap) /.
Moreover, the characteristic exponent of E is given by
T () = T'(ap - iz) T(1—ap +-IZ) ’
I'(—iz) T'(1—-a+iz)
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THE RADIAL PART OF A STABLE PROCESS

> Suppose that X is a symmetric stable process, i.e p = 1/2.
> We know that |X| is a pssMp.

Theorem
Suppose that the underlying Lévy process for |X| is written &, then it characteristic exponent is
given by

F(%(—iz + a)) I‘(%(iz +1))

V@ =27 r(—liz) TIllz+1-a)

z € R.
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HYPERGEOMETRIC LEVY PROCESSES (REMINDER)
Definition (and Theorem)
For (8,7, ,4) in
{B<2,79€(0)B>-1,and1-B+B+yA5>0 }

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy
process, having the characteristic function

1—B+~y—iz) (B +4 +iz)

N1-8-iz) TI(B+iz) PeR

(@) = =

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

L'(n) - oty
TR A€ oF (T+v,mn—4e7"), if x>0,
I'(n—9T(—) ( )
w(x) =
I'(n) (B+4)x . . .
e C 2F1 (1 +4,m5m —v;e%), if x<0,
I'(n—yI'(—9)

wheren :=1— B+~ + B8+ 4, for |z| <1,2F1(a,b;c;2) :== ZkZO (‘E)CIS,({Z!)ka'
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§5. Entrance Laws
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STARTING FROM ZERO

> We have carefully avoided the issue of talking about pssMp issued from the
origin.
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STARTING FROM ZERO

> We have carefully avoided the issue of talking about pssMp issued from the
origin.
> This should ring alarm bells when we look at the Lamperti transform
Zt(x)l(f<g(X)) = xexp{{,—apn} = exp{§{,(x—ay +logx}, t>0,
> On the one hand log x | —oo, which is the point of issue of &, but

S
p(x™%) =inf{s > 0: / e(&utlog ) qy > 1},
0

meaning that we are sampling the Lévy process over a longer and longer time
horizon.
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STARTING FROM ZERO

> We have carefully avoided the issue of talking about pssMp issued from the
origin.
> This should ring alarm bells when we look at the Lamperti transform

Zt(X)l(Kg(X)) = xexp{&w(rat)} = eXP{@;(x*at) + logx}, t>0,
> On the one hand log x | —oo, which is the point of issue of &, but
S
p(x™%) =inf{s > 0: / e(&utlog ) qy > 1},
0
meaning that we are sampling the Lévy process over a longer and longer time

horizon.

> We know that 0 is an absorbing point, but it might also be an entrance point (can
it be both?).
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STARTING FROM ZERO
> We have carefully avoided the issue of talking about pssMp issued from the
origin.
> This should ring alarm bells when we look at the Lamperti transform
Zt(X)l(Kg(X)) = xeXP{fap(rat)} = exp{ﬁp(x*at) + logx}, t>0,

> On the one hand log x | —oo, which is the point of issue of &, but
S
p(x™%) =inf{s > 0: / e(&utlog ) qy > 1},
0

meaning that we are sampling the Lévy process over a longer and longer time
horizon.

> We know that 0 is an absorbing point, but it might also be an entrance point (can
it be both?).

> We know that some of our new friends have no problem using the origin as an
entrance point, e.g. |X|, where X is an a-stable process (or Brownian motion).
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STARTING FROM ZERO

| 2

We have carefully avoided the issue of talking about pssMp issued from the
origin.

This should ring alarm bells when we look at the Lamperti transform

Zt(x)l(t<<(x)) = xexp{fw(xfat)} = exp{gw(xfat) + logx}7 t>0,

On the one hand log x | —oo, which is the point of issue of &, but
S
p(x™%) =inf{s > 0: / e(&utlog ) qy > 1},
0

meaning that we are sampling the Lévy process over a longer and longer time
horizon.

We know that 0 is an absorbing point, but it might also be an entrance point (can
it be both?).

We know that some of our new friends have no problem using the origin as an
entrance point, e.g. |X|, where X is an a-stable process (or Brownian motion).

We know that some of our new friends have no problem using the origin as an
entrance point, but also a point of recurrence, e.g. X — X, where X is an a-stable
process (or Brownian motion).
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STARTING FROM ZERO

> We want to find a way to give a meaning to “Py := lim, o Py”.
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STARTING FROM ZERO

> We want to find a way to give a meaning to “Py := lim, o Py”.

> Could look at behaviour of the transition semigroup of Z as its initial value tends
to zero. That is to say, to consider whether the weak limit below is well defined:

Py(Z: € dy) = lxiil(’)l]P’x(Zt € dy), t,y > 0.
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STARTING FROM ZERO

> We want to find a way to give a meaning to “Py := lim, o Py”.

> Could look at behaviour of the transition semigroup of Z as its initial value tends
to zero. That is to say, to consider whether the weak limit below is well defined:

Py(Z: € dy) = lxiiIvl(’)lpx(Zt € dy), t,y > 0.

> In that case, for any sequence of times 0 < t; <t <.-- <t;, < coand
Y1, yn € (0,00), n € N, the Markov property gives us

Po(Zt, € dy,- -+, Zy, € dyn)
=1limPx(Zy, € dyr, -, Zy, € dya)
xJ0

= lxiﬁ)lﬂmx(zfl € dy1)Py, (Zt,—1, € dya, -+, Zt,—1, € dyn)
=Po(Zy, € dy1)Py, (Zty—1, € Ay, -+, Zt,—1, € dyn).

When the limit exists, it implies the existence of Py as limit of Py as x | 0, in the
sense of convergence of finite-dimensional distributions.
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STARTING FROM ZERO

> We would like a stronger sense of convergence e.g. we would like

Eolf(Zs : s <t)] —hmIEx[f(Zs:SSt)]

for an appropriate measurable function on cadlag paths of length ¢.
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> We would like a stronger sense of convergence e.g. we would like
Eolf(Zs : s <t)] —hmIEx[f(Zs:SSt)]
for an appropriate measurable function on cadlag paths of length ¢.

> The right setting to discuss distributional convergence is with respect to so-called
Skorokhod topology.
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STARTING FROM ZERO

> We would like a stronger sense of convergence e.g. we would like

Bolf (Zs :s < 1) = lim Ex[f(Zs : 5 < 1)

for an appropriate measurable function on cadlag paths of length ¢.

> The right setting to discuss distributional convergence is with respect to so-called
Skorokhod topology.

» ROUGHLY: There is a metric on cadlag path space which does a better job of
measuring how “close" two paths are than e.g. the uniform functional metric.

> This metric induces a topology (the Skorokhod topology). From this topology, we
build a measurable space around the space of cadlag paths.

» Think of Py, x > 0 as a family of measures on this space and we want weak
convergence “IPy := lim,_,o ’,” on this space.
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STARTING FROM ZERO

Theorem

Suppose that (&, Py), x € R is the Lévy process (not a compound Poisson process) underlying
the pssMp (Z,Py), x > 0. The limit Py := lim,_,( Py exists in the sense of convergence with
respect to the Skorokhod topology if and only if Ey (H1+ ) < oo (HT is the ascending ladder
process of &). Under the assumption that (&) > 0, for any positive measurable function f and

t>0, ,
1/
Bof20) = —p o (,iof ((,;) )) ,

where [oo = f0°° e&dt and (¢, f’o) is equal in law to (—&, Pp).
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RECURRENT EXTENSION

> The previous construction has insisted that Z is a pssMp with ¢ = oo a.s. But what
about the case that { < oo a.s.
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RECURRENT EXTENSION

> The previous construction has insisted that Z is a pssMp with ¢ = oo a.s. But what
about the case that { < oo a.s.

> We can say something about the case that { < oo a.s. and X._ = 0.
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RECURRENT EXTENSION

> The previous construction has insisted that Z is a pssMp with ¢ = oo a.s. But what
about the case that { < oo a.s.

> We can say something about the case that { < oo a.s. and X._ = 0.

> A cadlag strong Markov process, 2:: {Z: t > 0} with probabilities {l?x, x>0},
is a recurrent extension of Z if, for each x > 0, the origin is not an absorbing state
P x-almost surely and {2M? : + > 0} under P x has the same law as (Z, Py), where

— —
¢=inf{t >0:2Z;=0}.
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RECURRENT EXTENSION

> The previous construction has insisted that Z is a pssMp with ¢ = oo a.s. But what
about the case that { < oo a.s.

> We can say something about the case that { < oo a.s. and X._ = 0.

> A cadlag strong Markov process, 2:: {Z: t > 0} with probabilities {l?x, x>0},
is a recurrent extension of Z if, for each x > 0, the origin is not an absorbing state

P x-almost surely and {2M? : + > 0} under P x has the same law as (Z, Py), where

— —
¢=inf{t >0:2Z;=0}.

Theorem
If ¢ < coas. and X¢_ = 0, then there exists a unique recurrent extension of Z which leaves 0
continuously if and only if there exists a 8 € (0, o) such

Eo(e®¢1) = 1.

Here, as usual, « is the index of self-similarity.
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§6. Real valued self-similar Markov processes
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> So far we only spoke about [0, co).
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> So far we only spoke about [0, co).

> What can we say about R-valued self-similar Markov processes.
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> So far we only spoke about [0, co).
> What can we say about R-valued self-similar Markov processes.

> This requires us to first investigate Markov Additive (Lévy) Processes
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MARKOV ADDITIVE PROCESSES (M APS)

> Eis a finite state space

> (J(t))t>0 is a continuous-time, irreducible Markov chain on E

> process (§,]) in R x E is called a Markov additive process (MAP) with probabilities
P, x € R,i € E if, foranyi € E, s,t > 0: Given {J(t) = i},

(E(t+5) — (1), J(t +9)) £ (£(5),](s)) with law Py .
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PATHWISE DESCRIPTION OF A MAP

The pair (&,]) is a Markov additive process if and only if, for each 7,j € E,
> there exist a sequence of iid Lévy processes (£/') >0
> and a sequence of iid random variables (UZ')”ZO’ independent of the chain J,
> such that if Ty = 0 and (T4),>1 are the jump times of ],
the process £ has the representation

€ = 1>0) (€T =) + Ujgr, ) yer,) + & (¢ = T

fort € [Tu,Tyt1), n > 0.
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CHARACTERISTICS OF A MAP

> Denote the transition rate matrix of the chain ] by Q = (4;); jek-

> For eachi € E, the Laplace exponent of the Lévy process &; will be written v);
(when it exists).

> For each pair of i,j € E withi # j, define the Laplace transform G;;(z) = E(e*i) of
the jump distribution U;; (when it exists).

> Otherwise define U; ; = 0, for each i € E.

Write G(z) for the N x N matrix whose (i, j)th element is G;;(z).

> Let

v

(z) = diag(¢1(2), .-, ¥n(2)) + Qo G(2),
(when it exists), where o indicates elementwise multiplication.

> The matrix exponent of the MAP (¢,]) is given by
EO,i(BZE(t);](t) :]) = (e‘I’(Z)t)i]'y i: ] S E7

(when it exists).
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|
DuAL MAP
> Thanks to irreducibility, the Markov chain | necessarily has a stationary
distribution. We denote it by the vector 7w = (71, - - - , N).

> Each MAP has a dual process, also a MAP, with probabilities f’x’i, xeR,i€E,
determined by the dual characteristic matrix exponent (when it exists),

¥ (z) := diag(— Wi(—2),-+ , —¥n(-2)) + Qo G(-2)",
where Q is the time-reversed Markov chain J,
. T .
9ij = ;iqj,i» i,j € E.

Note that the latter can also be written Q@ = A7'QT A, where Ay = diag(7).

» When it exists, .
V(z) = AW (—2) AL,

showing that
il €561, )i = j| = mjEo,j [e~E, )i = 1]
Lemma
The time-reversed process ((g(t,s), — ft,]@,s),) ,8 < t) under Py . is equal in law to

((&s,]s),8 < t) under IA’O,‘n-' 53/ 66
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LAMPERTI-KIU TRANSFORM

> Take | to be irreducible on E = {1, —1}.
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LAMPERTI-KIU TRANSFORM

> Take | to be irreducible on E = {1, —1}.

> Let
Z = x|ef BT (r(jx]7)  0<t< Ty,
where .
() = inf {s >0: / exp(ag(u))du > t}
0
and

Ty = |x|’°‘/ e qy.
0

> Then Z; is a real-valued self-similar Markov process in the sense that the law of
(¢Zy—a : t > 0) under Py is Pey.

54/ 66



§1. §2. §3. §4. §5. §6. Exercises.
0000 0000000000000 0000 0000000000000 0 00000 00000e00000000 000
I

LAMPERTI-KIU TRANSFORM

> Take | to be irreducible on E = {1, —1}.

> Let
Z = x|ef BT (r(jx]7)  0<t< Ty,
where .
() = inf {s >0: / exp(ag(u))du > t}
0
and

oo
To = |x|~¢ / e dy.
0
> Then Z; is a real-valued self-similar Markov process in the sense that the law of
(¢Zy—a : t > 0) under Py is Pey.
> The converse (within a special class of rssMps) is also true.
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ENTRANCE AT ZERO

> Given the Lamperti-Kiu representation

2y = SO (o o) 0< < T,

it is clear that we can think of a similar construction from zero to the case of
pssMp.
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ENTRANCE AT ZERO

> Given the Lamperti-Kiu representation

2y = I ORI (o ~0r)) 0 << T,

it is clear that we can think of a similar construction from zero to the case of
pssMp.

> We need to construct a stationary version of the pair (£, ]) which is indexed by R
and pinned at space-time point (—oo, 00).
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ENTRANCE AT ZERO

> Given the Lamperti-Kiu representation

2, = ST By ~op) 0 << T,
it is clear that we can think of a similar construction from zero to the case of
pssMp.

> We need to construct a stationary version of the pair (£, ]) which is indexed by R
and pinned at space-time point (—oo, 00).

> Just like the theory of Lévy processes, by observing the range of the process (&, J;)

t > 0, only at the points of its new suprema, we see a process (Ht"' , It"' ), >0,
which is also a MAP, where H is has increasing paths.
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ENTRANCE AT ZERO

Theorem

Assume that Z is a conservative real self-similar Markov process. Moreover, suppose that the
MAP ((&, ©), P), associated with Z through the Lamperti-Kiu transform, is such that & is not
concentrated on a lattice and its ascending ladder height process H which satisfies

Eo, (H1) < oco. Then Py := limy o Py exists, in the sense of convergence of on the Skorokhod
space, under which Z leaves the origin continuously. Conversely, if Ey  (H1) = oo, then this
limit does not exist. Under the additional assumption that Eq (&) > 0, for any positive
measurable function f and t > 0,

1/
Bof2) = —p e zijlmls()z(m <(I;) )) ®

where [oo = f0°° exp{a&s}ds, and ]AEX,,-, xeR,i==+1.
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AN -STABLE PROCESS IS A RSSMP

> An a-stable process up to absorption in the origin is a rssMp.
» When a € (0, 1], the process never hits the origin a.s.
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AN -STABLE PROCESS IS A RSSMP

> An a-stable process up to absorption in the origin is a rssMp.
» When a € (0, 1], the process never hits the origin a.s.
> When a € (1,2), the process is absorbs at the origin a.s.
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AN -STABLE PROCESS IS A RSSMP

> An a-stable process up to absorption in the origin is a rssMp.
> When a € (0, 1], the process never hits the origin a.s.

> When a € (1,2), the process is absorbs at the origin a.s.

> The matrix exponent of the underlying MAP is given by:

 Da—2z)P(1+2z) Ta—2z)I'(1+2z2)
T(ap—2)0(1— ap +2) C(ep)T(1 — ap)
T'(a—2)I'(1+2z2)  Tla=2P(1+2)
T'(ap)T'(1 — ap) I(ap—2)T'(1 —ap+2)

for Re(z) € (—1, o). Note a matrix A in this context is arranged with the ordering

( Al A )
A1n A1 )7
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ESSCHER TRANSFORM FOR MAPS
> If ®(z) is well defined then it has a real simple eigenvalue x(z), which is larger
than the real part of all its other eigenvalues.

> Furthermore, the corresponding right-eigenvector v(z) = (v1(z),- - - ,on(z)) has
strictly positive entries and may be normalised such that 7 - v(z) = 1.

Theorem
Let G = o{(&(s),]J(s)) :s < t}, t >0, and

M, = 760Xt IO (7)7 >0,
oi(v)

for some ~y € R such that x () is defined. Then, My, t > 0, is a unit-mean martingale.
Moreover, under the change of measure

dPg’i 6= M; dP0,i|gt , t>0,
the process (&, ]) remains in the class of MAPs with new exponent given by

U, (2) = Bo(7) ¥ (z+7)Ao(v) — (L.

Here, 1is the identity matrix and Ay (y) = diag(v(7)).
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ESSCHER AND DRIFT

> Suppose that x is defined in some open interval D of R, then, it is smooth and
convex on D.
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ESSCHER AND DRIFT

> Suppose that x is defined in some open interval D of R, then, it is smooth and
convex on D.

> Since ¥(0) = —Q, if, moreover, ] is irreducible, we always have x(0) = 0 and
v(0) = (1,---,1). So 0 € D and x/(0) is well defined and finite.
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ESSCHER AND DRIFT

> Suppose that x is defined in some open interval D of R, then, it is smooth and
convex on D.

> Since ¥(0) = —Q, if, moreover, ] is irreducible, we always have x(0) = 0 and
v(0) = (1,---,1). So 0 € D and x/(0) is well defined and finite.

> With all of the above
lim > = x/(0) a.s.
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ESSCHER AND THE STABLE-MAP

> For the MAP that underlies the stable process D = (—1, «v), it can be checked that
det¥(a — 1) = 01i.e. x(a — 1) = 0, which makes

T(z) =AW (z+a—-1)A

-z (a+2z) 'l —z)I'(a+z)
(1l —ap—2z)(ap+z) (ap)l'(1 — ap)
; I'(1—2)T(a +2) _ I(1-2)(a+2)
T(ap)L(1 — ap) T'(1— ap—2)(ap +2)

where A = diag(sin(rap), sin(mrap)).
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ESSCHER AND THE STABLE-MAP

> For the MAP that underlies the stable process D = (—1, «v), it can be checked that
det¥(a — 1) = 01i.e. x(a — 1) = 0, which makes

T(z) =AW (z+a—-1)A

-z (a+2z) 'l —z)I'(a+z)
(1 —ap—2)T(ap+2z) (ap)l'(1 — ap)
; I'(1—2)T(a +2) _ I(1-2)(a+2)
T(ap)L(1 — ap) T'(1— ap—2)(ap +2)

where A = diag(sin(rap), sin(mrap)).

» When « € (0,1), x’(0) > 0 (because the stable process never touches the origin
a.s.) and ¥°(z)-MAP drifts to —oo
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ESSCHER AND THE STABLE-MAP

> For the MAP that underlies the stable process D = (—1, «v), it can be checked that
det¥(a — 1) = 01i.e. x(a — 1) = 0, which makes

T(z) =AW (z+a—-1)A

-z (a+2z) 'l —2z)I'(a+2)
(1 —ap—2)T(ap+2z) (ap)l'(1 — ap)
; I'(1—2)T(a +2) _ I(1-2)(a+2)
T(ap)L(1 — ap) T'(1— ap—2)(ap +2)

where A = diag(sin(rap), sin(rap)).

» When « € (0,1), x’(0) > 0 (because the stable process never touches the origin
a.s.) and ¥°(z)-MAP drifts to —oo

» When «a € (1,2), X' (0) < 0 (because the stable process touches the origin a.s.) and
W (z)-MAP drifts to +oo.
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RIESZ-BOGDAN-ZAK TRANSFORM

Theorem (Riesz-Bogdan—Zak transform)
Suppose that X is an a-stable process as outlined in the introduction. Define

S
n(t) = inf{s > 0 : / Xu2odu> 1), t>0.
0

Then, for all x € R\{0}, (—=1/X,,(1))t>0 under Py is equal in law to (X, Pil/x), where

a—1

dpe
Licrton)

dPy

X
x

_ (sin(ﬂap) + sin(rap) — (sin(rap) — sin(ﬂ'ocﬁ))sgn(Xt))
F sin(mwap) + sin(rap) — (sin(rap) — sin(rap))sgn(x)

and Fy := o(Xs : s < t), t > 0. Moreover, the process (X, P2), x € R\{0} is a self-similar
Markov process with underlying MAP via the Lamperti-Kiu transform given by ¥° (z).
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WHAT IS THE W°-MADP?

Thinking of the affect on the long term behaviour of the underlying MAP of the
Esscher transform

» When a € (0,1), (X,Pg), x # 0 has the law of the the stable process conditioned
to absorb continuously at the origin in the sense,

]P’;(A) = t}i_l;%]P’y(A,t < Ty ‘ T(—a,) < OO),

forA e F =o0(Xs,s <t),
T(—a,) = Inf{t > 0:|X¢| <a}and Ty = inf{t > 0: X; = 0}.

» When a € (1,2), (X,Pg), x # 0 has the law of the stable process conditioned to
avoid the origin in the sense

Pg(A) = lim Py(A|Ty > £ +5),

forA € Ft = o(Xs,s <t)and Ty = inf{t > 0: X; = 0}.
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EXERCISES

1. Suppose that X is a stable process in any dimension (including the case of a
Brownian motion). Show that | X| is a positive self-similar Markov process.

2. Suppose that B is a one-dimensional Brownian motion. Prove that

By
T e, 20,
is a martingale, where B, = inf,<; Bs.

3. Suppose that X is a stable process with two-sided jumps
> Show that the range of the ascending ladder process H, say range (H) has the property
that it is equal in law to ¢ x range(H).
> Hence show that, up to a multiplicative constant, the Laplace exponent of H satisfies
k(X) = A1 for 1 € (0, 1) (and hence the ascending ladder height process is a stable
subordinator).
> Use the fact that, up to a multiplicative constant

o mia(d— —mia(d— i )
T(z) = 0] (™2 7P 1 o) + e 2T ) = A(iz)R(—iz)

to deduce that R
k(0) = 077 and &(0) = 0°°.
and that 0 < ap,ap <1
> What kind of process corresponds to the case that ap = 1?
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EXERCISES

4. Suppose that (X, Py), x > 0 is a positive self-similar Markov process and let
¢ = inf{t > 0: X; = 0} be the lifetime of X. Show that P(¢ < oo) does not
depend on x and is either 0 for all x > 0 or 1 for all x > 0.

5. Suppose that X is a symmetric stable process in dimension one (in particular
p = 1/2) and that the underlying Lévy process for |X; \1( t<r{o}) Where
710 = inf{t > 0: X; = 0}, is written &. (Note the indicator is only needed when
o € (1,2) as otherwise X does not hit the origin.) Show that (up to a
multiplicative constant) its characteristic exponent is given by

JTG(-iz+a) T(d(z+1)

vz =2 r(—liz) T((z+1-a)

z € R.

[Hint!] Think about what happens after X first crosses the origin and apply the
Markov property as well as symmetry. You will need to use the law of the
overshoot of X below the origin given a few slides back.
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EXERCISES

6. Use the previous exercise to deduce that the MAP exponent underlying a stable
process with two sided jumps is given by

 Ma—2z)I(1+2z) Ta—2)I'(1+2z2)
T(ap—2)I(1 — ap +2) T(ap)D(1 — ap)
T(a—2z)T'(1+2)  D(a—2)P(1+2z)
T(ap)l(1 — ap) T(ap —2)T(1—ap+2z)

for Re(z) € (-1, ).
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