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1 Introduction

The subject is part of what is known as fluctuation theory and aims at giving information
of extrema of processes with stationary and independent increments over a, possibly infinite,
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period of time. Originally, it was relied heavily on complex-analytic techniques. The aim
of these lectures is to present a fully probabilistic approach. Processes with stationary and
independent increments in discrete time are known as random walks. In continuous time they
are known as Lévy processes. To develop the gist of the probabilistic approach it is necessary
that we start from discrete time first.

We assume that the reader is familiar with the notions of stopping times, the strong Markov
property, and Laplace and Fourier transforms of Borel measures. We shall use the terminology
“random element” for a random variable (a measurable function on some measurable space)
that takes values in another measurable space. The terminology indicates that the second
measurable space can (and will) be much more general than a Euclidean space; for example,
it can be a space of functions. If X,Y are random elements with values in the same space

(but defined, possibly, on different domains) we write X
(d)
= Y to mean that they have the

same law (=distribution).
Here is a ridiculously simple but important observation. Let Z1, Z2, . . . be i.i.d. random

elements of the same space. Let τ be the hitting time of a certain set A, that is,

τ = inf{n ≥ 1 : Zn ∈ A}.

Notice that τ is a stopping time (because {τ = n} = {Z1, . . . , Zn−1 6∈ A,Zn ∈ A}) that takes
values in N ∪ {∞}. If P(A) > 0 then τ < ∞ a.s. and τ is a geometric random variable:
P(τ = n) = (1 − P(A))n−1P(A). But the thing that I wish to point out is that (provided
P(A) > 0)

(Z1, . . . , Zτ−1) is independent of Zτ

and that, of course, Zτ−1 ∈ Ac but Zτ ∈ A a.s. This simple fact is known as découpage de
Lévy. It is this combination of independence and disjointness (one variable lives in A, the
other in Ac) that makes the Wiener-Hopf factorization work. This is to be seen. Moreover,
we can realize (simulate!) the (law of the) random element (Z1, . . . , Zτ ) as follows. Let µ
be the law of Z1. Let ν, Z ′′, Z ′1, Z

′
2, . . ., be independent such that ν is geometric in N with

parameter P(A); Z ′′ has law µ(·|Ac); each Z ′i has law µ(·|A). Then

(Z ′1, . . . , Z
′
ν−1, Z

′′)
(d)
= (Z1, . . . , Zτ−1, Zτ ).

See Exercise 3.
Note one more thing: whereas τ is a stopping time, τ − 1 is not: if we observe the first

m random elements are outside A we cannot decide, on the basis of this observation alone,
whether the m+ 1 element is in A. If σ is a general stopping time then we know that

(Z1, . . . , Zσ) is independent of Zσ+1. (1)

See Exercise 4. In view of this, we can appreciate the découpage de Lévy more: it says
something about one step before a stopping time. (The catch is, of course, that τ is not just
a stopping time but also a hitting time.)

2 Fine structure of random sums (andante)

Let ξ1, ξ2, . . . be i.i.d. random variables in R. Let

Xn = ξ1 + · · ·+ ξn, n ≥ 1,
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with X0 = 0. We are interested in

Xn = max
1≤t≤n

Xt, Xn = min
1≤t≤n

Xt.

Maxima and minima are harder than sums. We shall replace a maximum by a sum of random
elements over random indices. Let

α = inf{n ≥ 1 : Xn > 0}.

This is a stopping time with values in N ∪ {∞}. Introduce shift θ such that

ξn◦θ = ξn+1.

Then ξn◦θ
k = ξn+k and Xn◦θ

k = Xn+k −Xk. If α <∞ we can define θα and then we can see
that

α◦θα = inf{n > α : Xn > Xα}, on α <∞.

We can thus define the iterates
α = α1 < α2 < α3 · · ·

of the α recursively by

α1 = α, αk+1 = inf{n > αk : Xn > Xαk} = inf{n > αk : Xn > Xn−1} (2)

See Exercise 6 for the second equality. Note that the sequence α1, α2, . . . is either infinite or
finite. Indeed, if α =∞ has positive probability, the sequence will be finite. We shall thus be
careful about the possibility. Now define the α-counting process, that is,

L(t) :=
∞∑
k=1

1αk≤t = sup{k ≥ 1 : αk ≤ t}. (3)

See Exercise 7. Clearly, L(·) is unbounded iff the sequence (αk) is infinite. Observe L(αk) = k
(if αk <∞) and that, for all t,

αL(t) ≤ t < αL(t)+1.

Hence
if αi ≤ t < αi+1 then i = L(t). (4)

If the sequence Xn represents performance indices in a certain endurance game, then the
times α1, α2, . . . can be thought of as record times. We start with X0 = 0 performance. At
times αk we have the first occurrence of a performance index of value strictly larger than all
previous ones. Hence it easy to see that

Xt = XαL(t)
. (5)

See Exercise 8. But now we can (and we will) take advantage of the strong Markov property
which, in particular, implies that Xαk −Xαk−1

are independent. Let us express that in terms
of cycles. Define the k-th cycle as the random element

C(k) = (ξn, αk−1 < n ≤ αk).
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We have also defined C(1) if we use the convention α0 = 0. Note that1

C(1), C(2), C(3), . . . are i.i.d. killed at rate P(α =∞). (6)

Indeed, if α = ∞ then the sequence consists of only one cycle (of infinite length). On the
other hand, conditional on α1 < ∞, we have2 (ξ1, . . . , ξα1) ⊥⊥ (ξα1+1, . . . , ξα2) by the strong
Markov property. And so on. Thus, if P(α < ∞) = 1 the sequence C(1), C(2), C(3), . . . is
an infinite sequence of i.i.d. random elements. If P(α < ∞) < 1 we have a finite sequence
C(1), C(2), . . . , C(K) where K is the first k such that αk = ∞. Then the first K − 1 cycles
have finite lengths; the last cycle has infinite length.

Let next T be an independent geometric0 random variable with parameter p:

P(T = n) = (1− p)np, n = 0, 1, 2, . . .

Our first observation is probabilistic in nature:

Lemma 1.
(αL(T ), XT ) ⊥⊥ (T − αL(T ), XT −XT ).

Proof. If we think of tossing a fair coin with probability of heads equal to p, then T represents
the number of tails before the first head. We can realize T by means of a sequence δ1, δ2, . . . of
i.i.d. Bernoulli random variables with P(δn = 1) = p if we set T = inf{n ∈ N : δn = 1} − 1 =
sup{n ∈ N : δn = 0}. Instead of the i.i.d. ξn, n ∈ N, consider the i.i.d. (ξn, δn), n ∈ N and
redefine the cycles

C(k) = (ξn, δn, αk−1 < n ≤ αk).

Since the αk are still stopping times for the new sequence (ξn, δn), n ∈ N, we have that (6)
still holds. Let now I be the index of the first cycle containing a head. In other words, if we
define f(C(k)) :=

∑
αk−1<n≤αk δn, we have I = inf{k ≥ 1 : f(C(k)) 6= 0}. Hence

C(I − 1) ⊥⊥ C(I).

We can easily see that (Exercise 10)

I = L(T ) + 1. (7)

Hence
C(L(T )) ⊥⊥ C(L(T ) + 1).

But (αL(T ), XαL(T )
) is a function of C(L(T )) and (T − αL(T ), XT − XαL(T )

) is a function of
C(L(T ) + 1). Hence

(αL(T ), XαL(T )
) ⊥⊥ (T − αL(T ), XT −XαL(T )

).

But XαL(T )
= XT .

1If Z1, Z2, . . . is a sequence of random elements, the expression “the sequence Z1, Z2, . . . killed at rate p”
is taken to be equivalent to the sentence “consider the sequence Z1, Z2, . . . , Zγ−1”, where γ is an independent
geometric random variable with parameter p, i.e. P(γ = k) = (1 − p)k−1p. If p = 0 then γ = ∞ and so the
killed sequence is the original, infinite, sequence: killing at rate 0 means no killing.

2The notation X ⊥⊥ Y means that X and Y are independent random elements.
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Our next observation is deterministic in nature. It says that, for each t, the quantity
(t−αL(t), Xt−Xt) can be expressed as a deterministic function of the random walk reversed
at t. The random walk reversed at t is the sequence

X̂n := Xt −Xt−n, 0 ≤ n ≤ t.

(Note that X̂n, 0 ≤ n ≤ t, actually depends on t but we shall omit this from the notation.)
The relation is as follows:

Lemma 2.

Xt −Xt = X̂t

αL(t) = sup{n ≤ t : Xn > Xn−1}

t− αL(t) = sup{n ≤ t : X̂n ≤ X̂n−1}

A picture here is worth a thousand words (8)

Proof. The first equality is obvious. The second equality follows from (2) and the second
equality in (3). The last equality is left as an important exercise. (See Exercise 12 below.)

A comparison between the two last equalities of Lemma 2 and the fact that αL(t) was
obtained via iterates of the stopping time α makes it clear that t − αL(t) is also obtainable
via iterates of another stopping time, defined as:

β = inf{n ≥ 1 : Xn ≤ 0}.

Just like α, we define the iterates of β

β = β1 < β2 < · · ·

and the β-counting process

M(t) :=
∞∑
k=1

1βk≤t = sup{k ≥ 1 : βk ≤ t}.

It then follows that
βM(t) ≤ t < βM(t)+1,

βM(t) = sup{n ≤ t : Xn ≤ Xn−1},

Xt = XβM(t)
.

Except that the expression we derived in the last part of Lemma 2 involves the reversed walk
rather than the original. Using then the obvious notation (put β̂ instead of β when using X̂
instead of X, etc.), we have

Corollary 1.

t− αL(t) = β̂
M̂(t)

.
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See also Exercise 5 on the notion of dual stopping times.
Our third observation is again probabilistic.

Lemma 3.

(t− αL(t), Xt −Xt)
(d)
= (βM(t), Xt)

Proof. By Lemma 2 and Corollary 1 we have the algebraic relation

(t− αL(t), Xt −Xt) = (β̂
M̂(t)

, X̂t).

Since he reversed walk has the same law as the walk, i.e.,

(X0, X1, . . . , Xt)
(d)
= (X̂0, X̂1, . . . , X̂t),

we have (β̂
M̂(t)

, X̂t)
(d)
= (βM(t), Xt).

Theorem 1 (path decomposition). Let Xn, n ≥ 0, be any random walk in R with i.i.d.
increments and T an independent geometric0 time: P(T = n) = (1− p)np. Then

(T, XT )
(d)
= (αL(T ), XT )+̇(βM(T ), XT ),

where I am using the notation X1+̇X2 to denote a random variable whose law is the same as
the law of a random variable X1 and an independent random variable X2.

Proof. By Lemma 1,

(T, XT )
(d)
= (αL(T ), XT )+̇(T − αL(T ), XT −XT ).

Since T is independent of X, using Lemma 3 we obtain

(T − αL(T ), XT −XT )
(d)
= (βM(T ), XT ).

Remark 1. In the right-hand side of distributional equality of Theorem 1 not only the two
random elements are independent but they also have disjoint supports.

We are actually essentially finished. The rest is just straightforward calculations. But we
push on.

3 The Wiener-Hopf factorization

One of our goals is to figure out the laws of Xt and Xt for 0 ≤ t ≤ ∞. (The second ≤ is
not a typo.) But observe that the law of XT is a geometric sum of the laws of Xt. In other
words, the law of XT specifies the generating function of t 7→ law of Xt and that is good
enough. In our work below, I want you to keep in mind that XT = XαL(T )

and XT = XβM(T )
.

Put it otherwise, you should keep in mind that the maximum and the minimum have been
essentially expressed as sums of independent things.
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3.1 From the first to the last time

The first order of business is to show how to see how to go

from the law of (α,Xα) to the law of (αL(T ), XαL(T )
),

when T is an independent geometric0 random variable. It pays to do that a little bit more
generally.

Proposition 1 (From first to last). Let Sn = (S1
n, . . . , S

d
n), n ≥ 0, be a random walk in Rd

Let t be a stopping time with values in N∪ {∞}. Let t = t1 < t2 < · · · be the iterates of t and
L(t) the counts: L(t) = sup{k : tk ≤ t}. Let T be independent geometric0 random variable:
P(T = n) = qnp. Then, for θ = (θ1, . . . , θd) ∈ Rd

Eeiθ·StL(T ) =
1− Eqt

1− Eqteiθ·St
,

Proof. We just follow our nose: With t0 := 0 we have

Eeiθ·StL(T ) =
∑
k≥0

E[eiθ·Stk ; tk ≤ T < tk+1]

=
∑
k≥0

E[eiθ·Stk (qtk − qtk+1)]

=
∑
k≥0

E[eiθ·Stk qtk(1− qtk+1−tk)]

=
∑
k≥0

E(eiθ·Stk qtk)E(1− qtk+1−tk)]

= (1− Eqt)
∑
k≥0

(
E(eiθ·Stqt)

)k
=

1− Eqt

1− Eqteiθ·St
.

Caveat: The interpretation of Eqteiθ·St is E[qteiθ·St ; t <∞]. It is not necessary to include
the indicator function in view of |q| < 1, but in an expression like Eqteiθ·St one ought to
write E[eiθ·St ; t < ∞]. Nevertheless, one does not, out of sheer laziness and under-the-rug
conventions.

Applying the proposition to the random walk Xn, n ≥ 0, with stopping time α and then
with β, we have

EeiθXαL(T ) =
1− Eqα

1− EqαeiθXα
, EeiθXβM(T ) =

1− Eqβ

1− EqβeiθXβ
. (9)

So we only need to figure out what the distributions of (α,Xα) and (β,Xβ) are.

3.2 The laws at first times

Let F be the law of ξ1 and let F̂ (θ) = Eeiθξ1 be its characteristic function. Recall again that
XαL(T )

= XT and XβM(T )
= XT . By Theorem 1,

XT = XT +̇XT .
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We now take Fourier transforms of both sides. The left side is trivial: EeiθXT = 1−q
1−qF̂ (θ)

. The

right side is the product of the terms appearing in (9). Thus,

1− q
1− qF̂ (θ)

=
1− Eqα

1− EqαeiθXα
1− Eqβ

1− EqβeiθXβ
.

On the other hand, by Theorem 1 again,

T
(d)
= αL(T )+̇βM(T )

and so
EzT = EzαL(T ) EzβM(T ) .

This gives
1− q
1− qz

=
1− Eqα

1− E(qz)α
1− Eqβ

1− E(qz)β
.

and so
1− q = (1− Eqα)(1− Eqβ).

We thus arrive at
1− qEeiθξ1 =

(
1− EqαeiθXα

)(
1− EqβeiθXβ

)
.

Taking logarithms and using the Taylor expansion

− log(1− x) =
∑
n≥1

xn

n
, |x| < 1,

we obtain ∑ 1

n
(qEeiθξ1)n =

∑ 1

n
(EqαeiθXα)n +

∑
n

1

n
(EqβeiθXβ )n

Use the following notation for the measures appearing on the right-hand side:

Hq(·) = E(qα, Xα ∈ ·) = P(α ≤ T,Xα ∈ ·),
Kq(·) = E(qβ, Xβ ∈ ·) = P(β ≤ T,Xβ ∈ ·)

(keep in mind that Hq(−∞, 0) = 0 = Kq[0,∞)) and let Ĥq(θ), K̂q(θ) be their Fourier trans-
forms. With this notation, we have∑ 1

n
qnF̂ (θ)n =

∑ 1

n
Ĥq(θ)

n +
∑
n

1

n
K̂q(θ)

n.

Recalling that if µ is a bounded Borel measure with Fourier transform µ̂ then µ̂n is the
Fourier transform of the convolution of µ a number n of times by itself, that is, if we let
µ ∗ ν :=

∫
R µ(B − x)ν(dx) and then let, inductively, µ∗(n+1) := µn ∗ µ, n = 1, 2, . . ., with

µ∗1 := µ, we have µ̂n = µ̂∗n. Therefore,∑ 1

n
qnF ∗n =

∑ 1

n
H∗nq +

∑
n

1

n
K∗nq .
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This is an equality between Borel measures. Let B be a Borel subset of [0,∞). Since
K∗nq [0,∞) = 0, we have∑ 1

n
H∗nq (B) =

∑ 1

n
qnF ∗n(B), B ⊂ (0,∞).

Similarly, ∑ 1

n
K∗nq (B) =

∑ 1

n
qnF ∗n(B), B ⊂ (−∞, 0].

Taking Fourier transforms of both sides of the first display, we have

− log(1− Ĥq(θ)) =
∑
n

1

n
Ĥq(θ)

n =
∑
n

qn

n
E(eiθXn ;Xn > 0),

and similarly for the second display.

Proposition 2 (Baxter’s equations). Let Xn, n ≥ 0, be an arbitrary random walk in R with
stationary and independent increments. Let α be such that Xα > 0 for the first time (with
α =∞ if the random walk remains ≤ 0 for ever), and let β be such that Xβ ≤ 0 for the first
time (with β =∞ if Xn > 0 for all n ≥ 1). Then, for 0 < q < 1 and θ ∈ R,

E(qαeiθXα) = 1− exp
{
−
∑ qn

n
E(eiθXn ;Xn > 0)

}
E(qβeiθXβ ) = 1− exp

{
−
∑ qn

n
E(eiθXn ;Xn ≤ 0)

}
3.3 Recurrence/transience properties of a general random walk

First, we have lots of corollaries to Baxter’s equations.

Corollary 2.

Eqα = 1− exp

{
−
∑
n≥1

qn

n
P(Xn > 0)

}
, Eqβ = 1− exp

{
−
∑
n≥1

qn

n
P(Xn ≤ 0)

}
,

Corollary 3.

P(α =∞) = exp

{
−
∑
n≥1

1

n
P(Xn > 0)

}
, P(β =∞) = exp

{
−
∑
n≥1

1

n
P(Xn ≤ 0)

}
.

Proof. For 0 < q < 1, we have qα = qα1α<∞. Hence limq↑1 q
α = 1α<∞. By monotone

convergence, limq↑1 Eqα = P(α <∞).

Corollary 4. P(α < ∞) = 1 ⇐⇒
∑

n≥1
1
nP(Xn > 0) = ∞ ⇐⇒ P(limn→∞Xn = ∞) = 1.

In this case,

Eα = exp
∑
n≥1

1

n
P(Xn > 0).

P(β <∞) = 1 ⇐⇒
∑

n≥1
1
nP(Xn ≤ 0) =∞ ⇐⇒ P(limn→∞Xn =∞) = 1. In this case,

Eβ = exp
∑
n≥1

1

n
P(Xn ≤ 0).
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Proof. If α <∞ a.s. then all iterates of α are finite a.s. This means that there are infinitely
many records and so the random walk converges to infinity along a subsequence. The converse
also holds. Hence P(α < ∞) = 1 is equivalent to P(limn→∞Xn = ∞) = 1. The middle
equivalence is obtained from the expression for P(α = ∞) which is zero if and only if the
exponent

∑
n≥1

1
nP(Xn > 0) is infinity.

Corollary 5. We always have

Eα =
1

P(β =∞)
, Eβ =

1

P(α =∞)
.

Corollary 6. Cases I, II and III below are mutually exclusive:

P(α <∞) Eα P(β <∞) Eβ limXn limXn supnXn infnXn

I 1 ∞ 1 ∞ +∞ −∞ +∞ −∞
II 1 <∞ < 1 ∞ +∞ +∞ +∞ > −∞

III < 1 ∞ 1 <∞ −∞ −∞ < +∞ −∞

(The last 4 columns should be interpreted almost surely.)

Proof. We classify cases according to whether P(α <∞), P(β <∞) are = 1 or < 1 (4 cases).
But the case where they both equal to 1 is impossible, owing to the formulae of Corollary 5.
The equivalences on each line follow from earlier arguments.

Terminology: We say that the random walk is recurrent if I holds. Otherwise, we say that
it is transient. If II holds we say that it escapes to +∞. If III holds we say that it escapes to
−∞.

Proposition 3. If Eξ1 exists then, with reference to the previous corollary, I ⇐⇒ Eξ1 = 0,
II ⇐⇒ Eξ1 > 0, III ⇐⇒ Eξ1 < 0.

Proof. If Eξ1 > 0, then Xn → ∞ a.s., and so this is case II. Similarly for case III. The only
remaining possibility is Eξ1 = 0, and this is case I.

3.4 Overall extrema: Spitzer’s identity

Spitzer’s identity gives the (Fourier transform of the) distribution of XT , the maximum up
to a random memoryless time:

Theorem 2 (Spitzer’s identity). Let Xn, n ≥ 0, be any random walk in R with i.i.d. incre-
ments and T an independent geometric0 time: P(T = n) = qnp. Then

1

p
EeiθXT =

∞∑
n=0

qnEeiθXn = exp
∑
n≥1

qn

n
EeiθX

+
n .

Proof. The first of (9) gives

EeiθXT =
1− Eqα

1− EqαeiθXα
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The terms on the RHS of this identity are expressed by Baxter’s equation and Corollary 2:

EeiθXT = exp

{
−
∑
n≥1

qn

n
P(Xn > 0) +

∑
n≥1

qn

n
E(eiθXn ;Xn > 0)

}
= exp

{
E
∑
n≥1

qn

n
(eiθXn1Xn>0 − 1Xn>0)

}
= exp

{
E
∑
n≥1

qn

n
(eiθXn1Xn>0 + 1Xn=0 − 1)

}
= exp

{∑
n≥1

qn

n
(EeiθX

+
n − 1)

}
(10)

= (1− q) exp

{∑
n≥1

qn

n
EeiθX

+
n

}
.

Define
X∞ = sup

n
Xn = lim

n→∞
Xn.

Corollary 7. P(X∞ <∞) = 1 ⇐⇒
∑

n≥1
1
nP(Xn > 0) <∞.

Theorem 3. If P(X∞ <∞) = 1 we have

EeiθX∞ = exp
∑
n≥1

1

n
(EeiθX

+
n − 1).

Proof. From Spitzer’s identity, in the form of eq. (10), letting q ↑ 1 we have T ↑ ∞ a.s.
and so XT ↑ X∞ a.s. Since P(X∞ < ∞) = 1 we have

∑
n

1
nP(Xn > 0) < ∞. Using this

and the dominated convergence theorem on the RHS of (10) we have that its limit equals

exp
∑

n≥1
1
n(EeiθX

+
n − 1).

4 The difficulties in continuous time

If I is an interval, a function f : I → R is said to have at most discontinuities of the first
kind if, for all t ∈ I, the limits limε↓0 f(t ± ε) exist in R. It is said to be càdlàg if it has at
most discontinuities of the first kind and if it is right continuous. We let D(I) be the set of
càdlàg functions on I. We say that a collection of random variables Xt, t ≥ 0, on a probability
space (Ω,F ,P) is Lévy if it has stationary and independent increments and if, for all ω, the
path t 7→ Xt(ω) is càdlàg.

To appreciate the difficulties arising in trying to study the maxima of a Lévy process, let
us consider a Brownian motion Wt, t ≥ 0, and its minimum process

W t = inf
0≤s≤t

Ws = min
0≤s≤t

Ws.

A Brownian motion is a Lévy process with continuous paths. It follows (by a careful ap-
plication of the central limit theorem for triangular arrays) that a Brownian motion must
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have normal finite-dimensional distributions. It is also known that Qt = Wt −W t is a strong
Markov process with the property that

inf{t > 0 : Qt = 0} = 0 = inf{t > 0 : Qt > 0} a.s.

This forces the closed set {t ≥ 0 : Qt = 0} to be perfect: it contains all its limit points;
moreover it is nowhere dense. Such a set is uncountable and has Lebesgue measure 0. Hence
we cannot talk of the first time t > s such that Wt ≤ W s since this first time is equal to s.
And yet there are such times, in fact there are uncountably many such times. If we are to
follow an approach similar to that in discrete time, we must find a way to enumerate those
times. Since we cannot, we will try to find a way to “count” those times, that is, to count the
“number” of occurrences of these times on an interval. Recall, from discrete-time theory, that
L(t) counts the iterates of α up to time t; conversely, knowledge of L(t) implies knowledge
of the iterates of α. It turns out that the converse is possible for a Brownian motion and,
more generally, for a Lévy process. What we need to do is find an increasing random function
L(t), t ≥ 0, such that its point of increase (that is, the support of the random Borel measure
defined by L) coincides with the set

Z = {t ≥ 0 : Wt = W t} = {t ≥ 0 : Qt = 0}.

We shall then define the inverse of the function L and think of it as a proxy for the iterates
of α. The definition of L can be done in many ways, for example, using stochastic calculus.
But we shall follow a probabilistic approach.

The crux of the matter lies on the fact that every open subset of R is written uniquely as
the countable union of open intervals. Applying this to Z, we write Z as countable union of
intervals. If I is one of these open intervals then Wt > 0 for all t ∈ I, but Ws = 0 if s is one of
the endpoints of I. So, even though we cannot enumerate Z we can enumerate the intervals
of its complement and this will form the basis of the construction of L(t).

5 The reflected Lévy process as a Markov process

Let Xt, t ≥ 0, be a general Lévy process on the probability space (Ω,F ,P). For our purposes,
we may take Ω = D[0,∞), and F the smallest σ-algebra containing all open (in the Skorokhod
J1-topology) subsets of D[0,∞). Let N be the class of all subsets (the null sets) of Ω such
that there is A ∈ F with N ⊂ A and P(A) = 0. Let Ft := σ(X0, 0 ≤ s ≤ t) ∨ N ,
t ≥ 0, and let F∞ := F ∨ N . (The operation of enlarging a σ-algebra by the null sets
of a possibly bigger σ-algebra is called completion.) Then Ft, t ≥ 0, is a filtration (this
means that t1 < t2 ⇒ Ft1 ⊂ Ft2) with respect to which X is adapted (this means that Xt

is measurable with respect to Ft for all t). We say that the filtration Ft, t ≥ 0, is complete
(because it contains the null subsets of Ω). What is less obvious is that the operation of
completion has done something that should be thought of as magic: it has made the filtration
right-continuous, that is,

Ft = Ft+ :=
⋂
ε>0

Ft+ε.

This is not a trivial result. I cannot overemphasize its importance however. Indeed, from this
and the independent increment property we obtain that

A ⊂ F0 ⇒ P(A) ∈ {0, 1}. (11)
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We say that F0 = F0+ is trivial. But it is far from containing nothing. It contains lots of
interesting sets and measures lots of interesting random variables. The two random variables
that are of interest are

r := inf{t > 0 : Xt = inf
0≤s≤t

Xs}.

This is the first return to 0 of the reflected process Q. It plays the role of β from our
discrete-time theory. But, since r is measurable with respect to F0+ and since (11) holds we
immediately get

P(r = 0) ∈ {0, 1}.

The second random variable of interest is

s := inf{t > 0 : Xt > inf
0≤s≤t

Xs}.

Since, for t < s we have Xt = inf0≤s≤tXs, the time s is the sojourn time of Q at 0 (the amount
of time that Q spends at 0, starting from Q0 = 0). Again, s is measurable with respect to
F0+ and so

P(s = 0) ∈ {0, 1}.

We thus have four cases: P(r = s = 0) = 1 or P(r = 0, s > 0) = 1 or P(r > 0, s = 0) = 1 or
P(r > 0, s > 0) = 1. But, since s > 0 ⇒ r = 0, the fourth cases is not possible. Hence there
are, really, only three cases:

Case 1. P(r = s = 0) = 1: almost surely, every path of Q leaves 0 immediately and returns to 0
immediately.

Case 2. P(s > 0) = 1 (and hence P(r = 0) = 1): almost surely, every path of Q starts from 0
and stays at 0 for a while.

Case 3. P(r > 0) = 1 (and hence P(s = 0) = 1): almost surely, every path of Q leaves 0
immediately and returns to 0 at a strictly positive time.

Another picture worth a hundred words goes here (12)

Let us take a closer look at the reflected process. We shall show that it is a strong Markov
process. This means that the law of the future of Q after some time s, conditional on its past,
depends only on Qs. We can see this explicitly using A little algebra of the max-plus type
gives, for s < t,

Qt = Xt − inf
0≤u≤t

Xu

= sup
0≤u≤t

(Xt −Xu)

= sup
s≤u≤t

(Xt −Xu) ∨ sup
0≤u≤s

(Xt −Xu)

= sup
s≤u≤t

(Xt −Xu) ∨ sup
0≤u≤s

(Xt −Xs +Xs −Xu)

= sup
s≤u≤t

(Xt −Xu) ∨
(

sup
0≤u≤s

(Xs −Xu) +Xt −Xs

)
= sup

s≤u≤t
(Xt −Xu) ∨

(
Qs +Xt −Xs

)
.
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Hence Qt is a function of Qs and (Xt −Xs, t > s). But Qs is measurable with respect to Fs,
while (Xt − Xs, t > s) is independent of Fs. Whence the Markov property. Repeating the
argument for a stopping time t with respect to F· rather than t we obtain the strong Markov
property. Notice

Qt = sup
0≤u≤t

(Xt −Xu) ∨
(
Q0 +Xt

)
.

So if, for x ∈ R, we let Px be the law of x+X· then, for x ≥ 0, we can think of Px as the law
of Q· starting from Q0 = x. The strong Markov property then reads

P(Qt+· ∈ ·|Ft) = PQt(Q· ∈ ·) a.s. on {t <∞}.

The usual continuity with respect to the initial state (if y is close to x then the Py-law of Qt
is close to the Px-law of Qt, for each t, is obvious from the formula above giving the explicit
dependence on the initial state).

Introduce next a shift operator θt on the paths of X that takes X· and gives Xt+·. (Note
that this shift is substantially different from the shift we used in discrete time because there
we shifted increments rather than positions.) So if Y is a random variable then Y ◦θt is the
random variable at the shifted path: the random variable as seen when we shift the origin
of time from 0 to t. For example, if TA is the infimum of all s > 0 such that Xt ∈ A then
TA◦θt is the infimum of all s > 0 such that Xt+s ∈ A. We may also define θt for any finite
random variable (in particular a stopping time) that takes values in the set of times. The
strong Markov property can thus be equivalently written as

E(Y ◦θt|Ft) = EQtY a.s. on {t <∞}.

for any bounded measurable function Y .
Note that Z contains lots of stopping times. For instance, we may define the first return

of Q to 0 after the first time that Q has exceeded a given level u and has spent time at least
v above level u. If we call t this rather complicated stopping time then the strong Markov
property at t tells us that the path of the process in the right neighborhood of t behaves like
in one of the above 3 cases. This gives a further picture of what the paths of Q are like.

Remark 2. In what follows we construct the so-called local time of Qt = Xt − Xt at 0.
The only essential property of Q required for this construction is that it is a strong Markov
process. Hence the construction is much more general.

6 Excursions from the origin (moderato)

We are mainly interested in the reflected process Qt = Xt −Xt, t ≥ 0, that was shown to be
strong Markov. The development below is much more general. So we shall be thinking of Q
as a strong Markov process in a nice space (e.g. Rd) relative to a right-continuous complete
filtration with right-continuous sample paths and with a certain continuity condition with
respect to the initial state (Feller process).

An excursion of Q away from 0 is, by definition, a piece

Qt, g < t < d,

of the process such that Qt > 0 for all t ∈ (g, d), and the interval (g, d) is maximal; in the
sense that if we enlarge it we shall find a zero of Q or a point that can be written as limits of
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zeros of Q. The interval (g, d) is called an excursion interval and it may be the case that d is
at ∞.

Lemma 4. If U is a nonempty open subset of R then there is a unique pairwise disjoint
family I of open intervals such that

U =
⊎
I∈I

I.

The family I is countable. The endpoints of each I ∈ I are not in U .

Proof. Exercise.

The members of I are called components of U . This is justified from the fact that if
U is considered as a topological space with the embedded topology then the I ∈ I are the
connected components of U , that is, those subsets of U that are simultaneously open and
closed in U .

Consider again the random set Z of zeros of Q. The strong Markov property of Q implies
that Q is a regenerative process over Z (some people say that the set Z is a regenerative set
for Q):

P(Qt+· ∈ ·|Ft) = P(Q· ∈ ·) a.s. on t ∈ Z︸ ︷︷ ︸
t<∞, Qt=0

.

Applying the lemma above to the set Z we find that there exists a unique countable collection
I of pairwise disjoint open intervals such that Z

c
= [0,∞) − Z =

⊕
I∈I I. The right-

continuity of X (and hence of Q) implies that every point in Z− Z is isolated from the right.
If I = (g, d) denotes the typical element of I then Zc is a countable union of intervals of the
form (g, d) or [g, d).

What we need to do next is find a nontrivial random locally finite Borel measure L whose
support is Z that is compatible with the regenerative property. It will turn out that this L
is unique up to multiplicative constant. If Z has positive Lebesgue measure (Case 2) then we
can take L to be the restriction of the Lebesgue measure on Z. If Z is countable (Case 3)
then we can take L to be proportional to the cardinality measure of Z, i.e. B 7→

∑
z∈Z∩B δz

or some variant theoreof. The only nontrivial case is Case 1. As we shall see, in this case,
Z is topologically just as the set of zeros of a Brownian motion, that is, it is uncountable, it
is nowhere dense and it has Lebesgue measure 0. For such, perfect, sets, finding nontrivial
measures on them is a nontrivial matter.

7 Counting and indexing excursions in Case 1

We now properly address the following problems: (i) How do we count how many excursions
we have on an interval of time [0, t]? (ii) How do we index these excursions properly?

Regarding (i), we will replace the verb “to count” by the verb “to measure” because there
are infinitely (albeit countably many) excursions on every interval. We shall thus construct an
increasing function L(t), t ≥ 0, that increases precisely when an excursion occurs. The Borel
measure defined by L will be a proper replacement of the counting one. Regarding (ii), and
having constructed L, we will simply consider the generalized inverse function L−1

ν , ν ≥ 0,
which has countably many points of discontinuity: when ν is a point of discontinuity of it,
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there is an excursion indexed by ν. This is the correct point of view. Once these processes
are established and understood, we’re ready to breeze through.3

7.1 Counting excursions

We shall consider Case 1 (the difficult case) here, that is, r = s = 0 a.s. Since we cannot
talk about the first excursion (interval), we must find a way to consistently enumerate the
excursions (after all, there are countably many of them).

For u > 0 we say that an excursion is of type u or that it is a u-excursion if it has duration
at least u. Since there can be at most finitely many such excursions over any compact interval,
we can enumerate them in a manner compatible to the ordering of real numbers. If we let
I (u) be the collection of u-excursions, we can write

I (u) = {(g1(u), d1(u)), (g2(u), d2(u)), . . .},

where
0 < g1(u) < d1(u) < g2(u) < d2(u) < · · ·

Note that I (u) may actually be a finite set, in which case there is a last u-excursion of infinite
duration.

It is not difficult to see that

Lemma 5. There is some u > 0 such that I (u) 6= ∅ a.s.

The point is that, whereas every path has a u-excursion for some u > 0, there is a u-
excursion for a u that does not depend on the path, almost surely for all paths. We shall use
the letter c0 for such a u and call it the “gauge constant”.

Notice that I (u) increases as u decreases, so I =
⋃
u>0 I (u) =

⋃
n≥1 I (1/n). Define

next the random variable

I1(u) = (g1(u), d1(u)), `1(u) = g1(u)− d1(u).

Notice that the intervals in I are ordered in a manner compatible with the ordering of real
numbers. So if I, J ∈ I we can say “I before J” if the right endpoint of I is smaller than
the left endpoint of J .

Lemma 6. Let 0 < u < v. Then I1(v) cannot be before I1(u). Furthermore,
(i) I1(u) before I1(v) ⇐⇒ `1(u) ≤ v
(ii) I1(u) = I1(v) ⇐⇒ `1(u) > v.

We shall also need

Lemma 7. The random variables dk(u), k = 1, 2, . . ., u > 0, are all stopping times. (But the
gk(u), k = 1, 2, . . ., u > 0, are not.)

A remarkable thing now happens: the function (x, y) 7→ P(`1(x) > y) is multiplicative in
the following sense. (Keep in mind that P(`1(x) > y) = 1 for y ≤ x.)

3breeze through something: to do something very easily or confidently
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Lemma 8. For 0 < x < y < z,

P(`1(x) > z) = P(`1(x) > y)P(`1(y) > z).

Proof. We have

{I1(x) = I1(z)} = {I1(x) = I1(y) = I1(z)}
= {I1(y) = I1(z)} \ {I1(x) before I1(y), I1(y) = I1(z)}

so
P(I1(x) = I1(z)) = P(I1(y) = I1(z))− P(I1(x) before I1(y), I1(y) = I1(z)).

Notice that {I1(x) before I1(y)} ∈ Fd1(x) because by the end of the first x-excursion we can
tell decide whether its duration was larger than y or not.

P(I1(x) before I1(y), I1(y) = I1(z)|Fd1(x)) = 1I1(x) before I1(y) P(I1(y) = I1(z)|Fd1(x)).

But, if I1(x) before I1(y) then I1(y + ε)◦θd1(x) = I1(y + ε) for any ε > 0. (In plain words: If
the first x-excursion is before the first y excursion then the first (y+ ε)-excursion is after the
first (y+ε)-excursion after the first x-excursion.) So, by the strong Markov property, and the
fact that Qd1(x) = 0,

P(I1(y) = I1(z)|Fd1(x)) = P(I1(y)◦θd1(x) = I1(z)◦θd1(x)|Fd1(x))

= PQd1(x)
(I1(y) = I1(z)) = P(I1(y) = I1(z))

Hence

P(I1(x) = I1(z)) = P(I1(y) = I1(z)) [1− P(I1(x) before I1(y))]

= P(I1(y) = I1(z))P(I1(x) = I1(y)).

We now apply Lemma 6.

Remark 3 (additivity). Note that if a function f : [0,∞)→ R satisfies

f(x, z) = f(x, y) + f(y, z), for all x < y < z

and f(x, x) = 0 then taking any c0 > 0 and defining g(x) = f(x, c0)1x≤c0 − f(c0, x)1x>c0 we
have that f(x, y) = g(x)− g(y).

Applying the above remark to the function − logP(`1(x) > y) we see that

P(`1(x) > y) =
Ψ(y)

Ψ(x)
, Ψ(x) :=

{
1/P(`1(x) > c0), x ≤ c0

P(`1(c0) > x), x ≥ c0

, Ψ(c0) = 1.

Note that Ψ(x) < ∞ for all x > 0; and that x < y ⇒ Ψ(y) ≥ Ψ(x); so define Ψ(∞) =
limx→∞Ψ(x). Also note that Ψ is right-continuous. Moreover, precisely because we are in
Case 1, we have limx↓0 Ψ(x) =∞. Note that Ψ(∞) could be 0 or positive. If Ψ(∞) > 0 then
there is a positive probability that the first c0-excursion have infinite length and so there is
an infinite-length excursion a.s. This means that Q never returns to 0 after a while, so Z is
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a bounded set. If Ψ(∞) = 0 then there are infinitely many c0 excursions a.s., and so Z is
unbounded. Hence P(Z is bounded) has probability 1 or 0 according as Ψ(∞) > 0 or not.
These remarks can be turned into recurrence properties for the Lévy process. Note that if Z
is bounded then limt→∞Xt > −∞.

Define now
Na(t) := sup{n ≥ 1 : gn(a) < t}, a > 0, t > 0.

Note that Nx(g1(x)) = 0 and Nx(g1(x − ε)) = 0 for ε > 0 because I1(x − ε) is either
before or the same as I1(x). Hence Nx(g1(y)) is nontrivial only when x ≤ y; moreover,
Nx(d1(y)) = Nx(g1(y)) + 1.

Theorem 4 (existence of continuous local time). For all t > 0, the lima↓0Na(t)/Ψ(a) exists
a.s. and is denoted by L(t). The random function t 7→ L(t) is defined a.s., it is increasing, it
is continuous and the support of the Borel measure defined by L is Z.

This theorem will be proved in several steps. First, we shall define L(t) for t being a right
endpoint of an excursion interval. To do this, we fix a u > 0, pick a u-excursion and loot at
its right endpoint. We first pick the first u-excursion, defined over (g1(u), d1(u)) and look at
L(d1(u)). Since we claim that this equals lima↓0Na(d1(u))/Ψ(a), we need to prove that this
limit exists. This is not particularly hard because we can explicitly compute the distribution
of Na(d1(u)) and then use a martingale argument.

Lemma 9. For x < y such that Ψ(x) > 0, the random variable Nx(d1(y)) is geometric with
parameter Ψ(y)/Ψ(x), i.e.

P(Nx(d1(y)) = k) =

(
1− Ψ(y)

Ψ(x)

)k−1 Ψ(y)

Ψ(x)
, k = 1, 2, . . .

Moreover, Nx(d1(y)) is independent of Qg1(y)+t, t ≥ 0.

Sketch of proof. We may as well prove thatNx(g1(y)) is geometric0 with parameter Ψ(y)/Ψ(x).
We only show that P(Nx(g1(y)) = 0) = Ψ(y)/Ψ(x) and leave the rest as an exercise for the
reader. We have

P(Nx(g1(y)) = 0) = P(I1(x) = I1(y)) = P(`1(x) > y) =
Ψ(y)

Ψ(x)
.

Lemma 10. Fix u such that Ψ(u) > 0. Then

L(d1(u)) := lim
a↓0

Na(d1(u))

Ψ(a)
exists a.s. and in L1.

Moreover, L(d1(u)) is independent of I1(u) and P(L(d1(u)) > t) = e−Ψ(u)t, t ≥ 0.

Proof. It is easy to see that the limit in distribution exists. Indeed, since Ψ(a) ↑ ∞ as a ↓ 0,

lim
a↓0

P
(
Na(d1(u))

Ψ(a)
> t

)
= lim

a↓0

(
1− Ψ(u)

Ψ(a)

)tΨ(a)

= e−Ψ(u)t.
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Since Na(d1(u)) is independent of Qg1(u)+·, it follows that lima↓0Na(d1(u))/Ψ(a) is inde-
pendent of I1(u). It remains to show that the a.s. limit actually exists. Define Ga :=
σ(I1(a), I2(a), . . . , INa(d1(u))), 0 < a < u. Note that x < y ⇒ Gx ⊃ Gy. Take x < y < u
and show that

E
[
Nx(d1(u))

Ψ(x)

∣∣∣∣Gy] =
Ny(d1(u))

Ψ(y)
.

This is because Nx(d1(y)) is a geometric random variable with parameter Ψ(y)/Ψ(x), so
ENx(d1(y)) = Ψ(x)/Ψ(y). So Nx(d1(u)), conditional on Gy is the sum of Ny(d1(u)) indepen-
dent such geometric random variables. So E[Nx(d1(u))|Gy] = Ny(d1(u))Ψ(x)/Ψ(y). And so
we have a reverse martingale. From this, convergence a.s. and in L1 follows.

Proof of Theorem 4. We define L(d1(u)) to be equal to lima↓0
Na(d1(u))

Ψ(a) . By applying
the strong Markov property at the right endpoints of u-excursions we have that, for all k,
lima↓0

Na(dk(u))
Ψ(a) exists. We denote this limit by L(dk(u)). By the strong Markov property

again we have that L(d1(u)), L(d2(u)) − L(d1(u)), L(d3(u)) − L(d2(u)), . . . are independent
exponential random variables. Since, decreasing u only increases the set of u-excursions, we
have defined L(t) for all t that are endpoints of some excursion. Let D be the set of these
endpoints. Clearly, L is increasing on D. We then define

L(s) :=

{
L(s), if s ∈ D

inft∈D,t>s L(t), otherwise.

All we need to show is that inft∈D,t>s = supt∈D,t<s is s 6∈ D, that is, that L(D) is dense in
[0,∞). If it is not dense in [0, d1(c0)] then there exists ε > 0 and t1, t2 ∈ D, t1 < t2, such that
L(t2)− L(t1) > ε. Conditioning on the geometric random variable Na(d1(c0)) we have

P(L(dk(a))− L(dk−1(a)) ≤ ε, 1 ≤ k ≤ Na(d1(c0)))

=
∞∑
n=1

P(Na(d1(c0)) = n)P(L(dk(a))− L(dk−1(a)) ≤ ε, 1 ≤ k ≤ n|Na(d1(c0)) = n)

=
∞∑
n=1

(
1− Ψ(c0)

Ψ(a)

)n−1 Ψ(c0)

Ψ(a)

(
1− e−Ψ(a)ε

)n
=

Ψ(c0)(1− e−Ψ(a)ε)

Ψ(c0) + (Ψ(a)−Ψ(c0))e−Ψ(a)ε

and this converges to 1 as a→ 0. Since, for all ε > 0, there is no jump of L bigger than ε it
follows that L has no jumps on [0, d1(c0)]. Using the strong Markov property we see that L
has no jumps anywhere.
By the construction of L, if t is a right point of increase of L then t ∈ Z and if t is a left point
of increase then t ∈ Z. Hence the support of the Borel measure defined by L is included in Z.
To show the opposite, we show that if Qu = 0 for some s < u < t then L(t) > 0. Look at the
first return rs to 0 after s. It is enough to show that L(rs + δ) > 0 for all δ > 0. or that, by
the strong Markov property, L(δ) > 0 for all δ > 0. But L(d1(x)) is an exponential random
variable with parameter Ψ(x), which is positive, for all small x > 0. Hence L(d1(x)) > 0 for
all small x > 0 a.s. and this completes the proof.

Theorem 5 (regenerative property of the local time). The local time L is regenerative on Z:
for any stopping time t,

L(t + ·)− L(t) ⊥⊥ Ft a.s. on t ∈ Z,
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and L(t + ·)− L(t)
(d)
= L.

Proof. Let t be a stopping time. Assume t < ∞ and Qt = 0 (these are events in Ft). Since,
by the strong Markov property, the process Qt+s, s ≥ 0, is independent of Ft and has the
same law as Q it follows that its local time is independent of Ft. But, since Qt = 0, by the
way we constructed the local time for Q, it follows that the local time of Qt+s, s ≥ 0, is
L(t + s)− L(t), s ≥ 0.

Theorem 6 (characterization of L). Let A(t), t ≥ 0, be a continuous increasing stochastic
process with A(t) being Ft-measurable for all t. Asume that the support of the Borel measure
defined by A is Z and that A has the regenerative property:

P
{(
Qt+·, A(t + ·)−A(t)

)
∈ ·|Ft

}
= P

{
(Q,A) ∈ ·} a.s. on t <∞ and Qt = 0.

Then A = kL for some deterministic k ≥ 0.

Sketch of proof. The regenerative property can be used to show that A(d1(b)) is memoryless
and hence exponential with parameter proportional to Ψ(b), say, kΨ(b) for some k ≥ 0. Fixing
a and letting b < a be small, we compare A(d1(a)) with Nb(d1(a)) and show that the difference
converges to 0 as b → 0. This shows that A(d1(a)) = kL(d1(a)). Hence A(t) = kL(t) for all
t ∈ D and hence A = kL.

Corollary 8. For any Lévy process Xt, t ≥ 0, and Qt = Xt −Xt, with L(t), t ≥ 0, the local
time at its infimum constructed in Theorem 4, we have that∫ t

0
1Qs=0 ds = δ L(t),

for some δ ≥ 0.

Proof. Let A(t) denote the left-hand side. Obviously, A(t) is Ft–measurable, it is increasing
and continuous in t. The support of the Borel measure defined by A is Z. Let t be a stopping
time. Then A(t + u) − A(t) =

∫ t+u
t 1Qs=0 ds and so the regenerative property of Theorem 6

holds. Therefore A is a multiple of L.

Note that the multiplicity constant δ might be zero. For example, in the case of Brownian
motion W , the set s such that Ws = W s has Lebesgue measure zero.

7.2 Indexing excursions

We found a way to count excursions on intervals [0, t]. We indexed excursions according to
their durations. We will now find another way to index excursions, one that is compatible
with the ordering of R.

We repeat our assumptions: we are dealing with a general Lévy process Xt, t ≥ 0, with
values in R, starting from X0 = 0 and we assume that we are in Case 1, i.e. P(r = s = 0) = 1.

We have constructed, on the same probability space supporting the Lévy process (that is,
as a functional of X) an increasing process L(t), t ≥ 0, such that it is continuous and such
that the Borel measure defined by L has support equal to Z, the set of t such that Xt = Xt

(equivalently, the points of increase of L are precisely the set Z). We call L(t), t ≥ 0, the local
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time of X at its infimum. Intuitively, L(t) is the “amount of time” spent by X at its infimum
on the interval [0, t].

Of course, with a mere change of sign, everything we said and will say applies equally well
to the points t such that Xt = Xt. The corresponding “amount of time” spent by X at its
supremum is called local time of X at its supremum.

Since L is increasing we can define its generalized inverse

L−1
ν := inf{t ≥ 0 : L(t) > ν}, ν ≥ 0.

The use of strict inequality > inside the infimum renders L−1 right-continuous. Had we used
≥ we would have obtained a left-continuous generalized inverse; we would have obtained the
left-continuous version of the generalized inverse. Namely,

L−1
ν− = inf{t ≥ 0 : L(t) ≥ ν}, ν ≥ 0.

Since we are in Case 1, we have that
L−1

0 = 0.

Notice that ν 7→ L−1
ν is merely right-continuous, not continuous in general; it is continuous

only trivial cases. (Which ones?) Notice also that, for all ν and t,

L(L−1(ν)) = ν, L−1
L(t)− ≤ t ≤ L

−1
L(t).

The latter is equality only at the points of increase of L.

Lemma 11. For ν ≥ 0, the random times L−1
ν and L−1

ν− are [0,∞]-valued stopping times.

Proof. Since L is a right-continuous and increasing we have that L−1
ν < t ⇐⇒ ν < L(t−).

Since L is continuous, L(t−) = L(t). Hence {L−1
ν < t} ∈ Ft, so L−1

ν is a stopping time. Since,
for all n, L−1

ν− 1
n

is a stopping time with L−1
ν− 1

n

↑ L−1
ν−, the latter is also a stopping time.

Lemma 12. For all t ≥ 0,

L−1
L(t)− = sup{L−1

µ : L−1
µ < t} = sup{s < t : Qs = 0}

L−1
L(t) = inf{L−1

µ : L−1
µ > t} = inf{s > t : Qs = 0}

In particular, L−1
L(t) ∈ Z a.s. on {L−1

ν < ∞} and L−1
L(t)− ∈ Z. The component intervals in the

decomposition of Z are precisely the intervals (L−1
ν−, L

−1
ν ), ν > 0, excluding the empty ones.

Proof. Note that L−1 can have at most countably many jumps and so the collection of the
nonempty intervals of the form (L−1

ν−, L
−1
ν ), ν > 0, is countable. The L−1

L(t) = inf{L−1
µ : L−1

µ >

t} simply follows from the definition of the right-continuous generalized inverse function. We
want to show that this coincides with the time of first return of Q to 0 after time t. Let Dt :=
inf{s > t : Qs = 0} be this first return time. If Dt > t then, since the support of the measure
defined by L is Z, we have that L(t) = L(Dt−) = L(Dt). Hence Dt ≤ L−1

L(t). If Dt = ∞ we

are done. Otherwise, Dt is a right point of increase for L, that is, L(Dt + ε) > L(Dt) = L(t)
for all ε > 0. Hence Dt + ε ≥ L−1

L(Dt)
for all ε > 0 and so Dt ≥ L−1

L(Dt)
. We have proved that

Dt is ≤ and ≥ than L−1
L(Dt)

, so they are equal. If Dt = t then t is a right point of increase for

L and so L(t+ ε) > L(t) for all ε > 0, so t ≤ L−1
L(t). Since we always have t ≤ L−1

L(t), we again
have equality. The other identity is proved similarly.
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For function f with at most jump discontinuities, let ∆f(t) := f(t+)− f(t−).

Corollary 9.

L−1
ν =

∑
µ≤ν

∆L−1
µ + δν.

Proof. The canonical decomposition of the function L−1
ν into a singular part and an absolutely

continuous part gives L−1
ν =

∑
µ≤ν ∆L−1

µ + Cν , where Cν is the continuous part. By Lemma

12, Cν =
∫ L−1

ν

0 1s∈Z ds = δL(L−1
ν ) = δν, by Corollary 8.

In what follows assume that
Ψ(∞) = 0.

This ensures that all excursions have finite duration almost surely.

Lemma 13. The process L−1
ν , ν ≥ 0, has stationary and independent increments.

Proof. This follows from the regenerative property of L. The details are left as an exercise.

Therefore, L−1
ν , ν ≥ 0, is a Lévy process that is, by construction, right-continuous and

increasing. Such Lévy processes are called subordinators because they are often used as
random time changes. (The composition operation is called subordination, in this business
only.)

We can identify the Laplace transform Ee−λL
−1
ν by looking at the Poisson random measure

η =
∑

ν≥0:∆L−1
ν >0

δ(ν,∆L−1
ν ).

Note that the sum in the display is countable, so η is a point process. It is a marked point
process indexed by ν ≥ 0 and having marks in (0,∞). because it can have at most one point
(ν, x) for each ν. It is a Poisson random measure because L−1 has independent increments.
By Corollary 9,

L−1
ν = δν +

∫ ∞
0

x η([0, ν], dx) (13)

both η and L−1 are measurable functions of one another. The mean measure for η is of
product form, with Lebesgue being the ν-marginal, i.e.,

Eη(dν, dx) = dν Π(dx),

because of stationarity in the ν-coordinate. Let

Ja := inf{ν ≥ 0 : ∆L−1
ν > a}.

Then
{Ja > ν} = {η([0, ν]× (a,∞)) = 0}.

But η([0, ν]× (a,∞) is a Poisson random variable with mean

Eη([0, ν]× (a,∞) = νΠ(a,∞)
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hence
P(Ja > ν) = e−νΠ(a,∞).

On the other hand, Ja is the instance of the first jump of L−1 of size > a. By Lemma 12
this Ja equals L(t) where t = g1(a) or t = d1(a). But L(d1(a)) is exponential with rate Ψ(a).
Hence

P(Ja > ν) = P(L(d1(a)) > ν) = e−νΨ(a).

We conclude that
Π(a,∞) = Ψ(a).

Now recall the famous formula giving the characteristic functional of a Poisson random mea-
sure

E exp

∫
fdη = exp

∫
(ef − 1)dEη,

easily obtainable by approximation. Apply this to (13) to obtain

Ee−θL
−1
ν = e−νδθ × exp

∫∫
[0,ν]×(0,∞)

(e−θx − 1)dµΠ(dx)

= e−νδθ × exp ν

∫
(0,∞)

(e−θx − 1)d(−Ψ)(x).

By integration by parts,∫
(0,∞)

(e−θx − 1)d(−Ψ)(x) = −
∫

(0,∞)
(−θ)e−θx(−Ψ(x))dx = −θ

∫ ∞
0

e−θxΨ(x)dx,

and so we have

Ee−θL
−1
ν = exp

{
− νθ

(
δ +

∫ ∞
0

e−θxΨ(x)dx

)}
.

Remark 4. If Ψ(∞) > 0 then L−1 is a subordinator killed at rate Ψ(∞), indicating that at
an exponential variable ν∗ with mean 1/Ψ(∞) <∞ the subordinator becomes infinity.

8 Counting and indexing excursions in Case 2

Assume now that Case 2 holds: s > 0 a.s., and hence r = 0 a.s. Then, by the strong Markov
property, the path of Q consists an “idle period”, followed by a “busy period”, followed by
an “idle period”, etc. (Idle means zero. Busy means positive.) That is, there are epochs

0 = R0 < S1 < R1 < S2 < R2 < · · ·

such that Q > 0 on each [Sk, Rk) and Q = 0 on each [Rk−1, Sk). We then have that S1

is exponentially distributed and QS1 > 0; both these things follow from the strong Markov
property; see Exercise 26. Then

Z = [0, S1) ∪ [R1, S2) ∪ · · ·

Define

L(t) :=

∫ t

0
1Qs=0 ds.
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Note that L is increasing and continuous, that L(t) is measurable with respect to Ft, that
the measure defined by L has support [0, S1] ∪ [R1, S2] ∪ · · · = Z and is regenerative in the
sense used above:

P
{(
Qt+·, L(t + ·)− L(t)

)
∈ ·|Ft

}
= P

{
(Q,L) ∈ ·} a.s. on t <∞ and Qt = 0.

We can now study the inverse process L−1
ν , ν ≥ 0, and see that L−1

0 > 0, and that it is a
subordinator, possibly killed.

9 Counting and indexing excursions in Case 3

Assume now that Case 3 holds: r > 0 a.s., and hence s = 0 a.s. In this case, Q touches 0 at
a locally finite set of points 0 = R0 < R1 < R2 < · · · That is, Qt = 0 if and only if t = Rk
for some k. This is the case closest to the discrete time one. Indeed, the times Rk are just
like the βk for the discrete-time random walk. The local time process can be nothing else but
a version of the counting process of the (Rk)k≥0. If we do so, we obtain a process with unit
jumps. Hence its generalized inverse is also piecewise constant that jumps on the integers.
As such it cannot be a Markov process. If we insist that the generalized inverse be a Markov
process then we are forced to make replace the unit jumps of the counting process by i.i.d.
exponential random variables (see Exercise 26) with some (any) common rate. So we define

L(t) =
∑
k≥1

τk 1Rk≤t, t ≥ 0,

where the τk are independent of everything else and i.i.d. exponentials. We lose adaptability,
but who cares? We can always increase the filtration. What is important is that L−1

ν is a
(killed) subordinator.

10 The Wiener-Hopf factorization for a Lévy process (presto)

Let Xt, t ≥ 0, be a Lévy process with EeiθXt = e−tψ(θ). Consider an independent exponential
random variable T with parameter λ, i.e. P(T > t) = e−λt, t ≥ 0. We first seek to decompose
(T,XT ), just as we did in discrete time (Theorem 1) by considering the path up to the last
occurrence of a record before T . As an analytical preliminary, which will be used as a shortcut
below, verify that

Ee−αT+iθXT = Ee(−α−ψ(θ))T =
λ

λ+ α+ ψ(θ)
= exp

{
−
∫ ∞

0
(1−e−αt−ψ(θ)t)t−1e−λtdt

}
. (14)

See Exercise 27. Define next

Xt := sup
s≤t

Xs, Xt := inf
s≤t

Xs

Gt = Gupt := sup{s < t : Xs = Xt}, Gdownt := sup{s < t : Xs = Xt}.

We would like to prove something like

(T, XT )
(d)
= (GupT , XT )+̇(GdownT , XT ). (15)
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This might not be quite true in general because records might not occur uniquely. The points
t such that Xt = Xt are “weak increasing ladder indices”. The points t such that Xt = Xt

are “weak decreasing ladder indices”. As we have seen in the discrete-time theory, we cannot
have both of them be weak. If one is weak, the dual is strict. Unless, of course, it is the case
that records occur uniquely. This happens if and only if X is not a CP (Compound Poisson)
process. The following explains this.

Proposition 4. If X is not a CP process then, for each t, there is a unique instance Gupt ∈
[0, t] such that XGupt

= Xt or XGupt
= Xt− and a unique instance Gdownt ∈ [0, t] such that

XGdownt
= Xt or XGdownt

= Xt−. In other words, the supremum of X on [0, t] is achieved at
a unique point. Similarly for the infimum.

Proof. We show the statement for the supremum. The infimum case will follow by a mere
change of sign. We show that for all s < t, if there is s < u < t such that Xu = Xu then
Xs < Xt. Let

r+ := inf{t > 0 : Xt > 0} r− := inf{t > 0 : Xt < 0}.

Since X is not compound Poisson then P(r+ = 0) = 1 or P(r− = 0) = 1 (or both). Suppose
P(r+ = 0) = 1. Then, obviously, Xε > 0 for all ε > 0. Applying the strong Markov property
at r+◦θs we have that Xt > Xr+◦θs ≥ Xs on the event r+◦θs < t. This is precisely what we
wanted to show. Suppose P(r− = 0) = 1. Then apply the previous argument to Xt − Xs,
s ≥ 0.

We now show something more general than (15), something that holds regardless of
whether X is PC or not.

Theorem 7 (path decomposition in continuous time). Let Xt, t ≥ 0, be any Lévy process in
R and let T be an independent exponential random variable with rate λ. Then

(T, XT )
(d)
= (GT , XT )+̇(T −GT , XT −XT ), (16)

Proof. We shall consider two cases by considering the time

r := inf{t > 0 : Xt −Xt = 0}.

By Blumenthal’s 0-1 law, either r > 0 a.s., or r = 0 a.s.
Case 1: r > 0 a.s. Then the times t such that Xt −Xt = 0 form a locally finite set and so we
can enumerate them:

0 = r0 < r = r1 < r2 < · · ·

They are all stopping times. In fact, they form iterates of r as in the discrete-time case. We
shall prove that

A := (Xt, 0 ≤ t ≤ GT ) ⊥⊥ (Xt −XGT , GT ≤ t < T ) =: B.

From this, our claim will follow because (GT , XT ) = (GT , XGT ) is a function of the random
element on the left, while (T − GT , XT − XT ) is a function of the random element on the
right. To prove the claim in the display, we shall prove that

Ef(A)g(B) = Ef(A)Eg(B)
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for bounded measurable functions f and g. This is a consequence of the strong Markov
property and the exponentiality:

Ef(A)g(B) =
∑
n≥0

E[f(A)g(B); rn < T ≤ rn+1]

=
∑
n≥0

E[f(Xt, 0 ≤ t ≤ rn)g(Xt −Xrn , rn ≤ t < T ); rn < T ≤ rn+1]

=
∑
n≥0

E
∫ rn+1

rn

f(Xt, 0 ≤ t ≤ rn)g(Xt −Xrn , rn ≤ t < s)λe−λsds

=
∑
n≥0

E[f(Xt, 0 ≤ t ≤ rn)e−λrn ]× E
∫ r

0
g(Xt, 0 ≤ t < s)λe−λsds

= Ef(A)Eg(B).

Case 2: r = 0 a.s. We know that there is a continuous local time process L(t), t ≥ 0, for the
strong Markov process Xt−Xt, t ≥ 0, “measuring” the amount of time that the latter spends
at 0 (or that X spends at its supremum). Let m be a large positive integer and let

Nm = [mL(T )] (integer part).

Then
Nm

m
< L(T ) <

Nm + 1

m
a.s.

Hence
L−1
Nm/m

≤ T ≤ L−1
(Nm+1)/m a.s.

Using the regenerative property of L and the argument from the first case obtain that

(Xt, 0 ≤ t ≤ L−1
Nm/m

) ⊥⊥ (Xt −XL−1
Nm/m

, L−1
Nm/m

≤ t < T ).

As m→∞, we have that Nm/m ↑ L(T ) and L−1
Nm/m

↑ L−1
L(T )− = GT . Hence

(Xt, 0 ≤ t ≤ L−1
Nm/m

)→ (Xt, 0 ≤ t < GT )

(Xt −XL−1
Nm/m

, L−1
Nm/m

≤ t < T )→ (Xt −XGT−, GT ≤ t < T ).

We thus have

A := (Xt, 0 ≤ t < GT ) ⊥⊥ (Xt −XGT−, GT ≤ t < T ) =: B.

From this we get
(GT , XGT−) ⊥⊥ (T −GT , XT −XGT−),

But our claim is that (GT , XT ) ⊥⊥ (T −GT , XT −XT ). This will follow once we show that

XGT− = XT a.s.

There are two cases to consider: either X is continuous at GT or not. If X is continuous
at GT then XGT− = XGT = XGT = XT . If X is not continuous at GT then XGT− > XGT

or XGT− < XGT . If XGT− > XGT then XGT− = XGT− = XGT = XT . If XGT− < XGT

we reach a contradiction by considering the locally finite set of (stopping) times t at which
Xt −Xt− > ε > 0 and by applying the strong Markov property.
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Theorem 8. Let Xt, t ≥ 0, be a general Lévy process If T is an independent exponential
random variable with rate λ, we can identify the laws of the stochastic decomposition (16) as
follows:

Ee−αGT−βXT = exp

{
−
∫

[0,∞)

∫
R

(1− e−αt−βx)t−1e−λtP(Xt ∈ dx)dt

}
Ee−α(T−GT )+β(XT−XT ) = exp

{
−
∫

(−∞,0)

∫
R

(1− e−αt+βx)t−1e−λtP(Xt ∈ dx)dt

}
, α, β ≥ 0.

The theorem becomes more transparent once we write and prove it in the case where X
is not a CP process. We shall do this.

Proof of the theorem in the non-CP case. If X is not a CP process then we have several things
happening at the same time. First of all, as proved in Proposition 4, there are no ties between
records. Using this and duality, we can show that

(t−Gt, Xt −Xt)
(d)
= (Gdownt , Xt).

Therefore, (15) holds. We repeat this here:

(T, XT )
(d)
= (GupT , XT )+̇(GdownT , XT ).

Moreover, P(Xt = 0) = 0. Note that the law of (T,XT ) has been identified at (14). We
rewrite this as

Ee−αT+iθXT = exp

{∫ ∞
0

(e−αt−ψ(θ)t−1)t−1e−λtdt

}
= exp

{
E
∫ ∞

0
(e−αt+iθXt−1)t−1e−λtdt

}
= exp

{
E
[
1Xt>0

∫ ∞
0

(e−αt+iθXt−1)t−1e−λtdt

]}
exp

{
E
[
1Xt<0

∫ ∞
0

(e−αt+iθXt−1)t−1e−λtdt

]}
,

So the first term in the product equals Ee−αG
up
T +iθXT , while the second term equals Ee−αGdownT +iθXT .

Corollary 10. For a general Lévy process Xt, t ≥ 0, and T an independent exponential[λ]
variable, the law of Gt = sup{s < t : Xt = Xt} is characterized by

Ee−αGT = exp

{∫ ∞
0

(e−αt − 1)t−1e−λtP(Xt ≥ 0)dt.

}

11 Excursion theory (prestissimo)

Let Qt, t ≥ 0, be (as earlier) a strong Markov processwith respect to a right-continuous
filtration Ft, t ≥ 0. We assume that the process starts from 0, returns to it immediately
and also leaves it immediately We constructed a continuous local time process L(t), t ≥ 0,
supported on the set Z, the closure of the set {t : Qt = 0} such that it regenerates, along with
Q, on this set. The right-continuous inverse function L−1

ν , ν ≥ 0, is such that L−1
ν− and L−1

ν
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are stopping times and, for any real time t, the excurstion straddling t starts at L−1
L(t)− and

ends at L−1
L(t) if the latter is finite.

We now let EXC be the set where excursions take values in. This is a nice Polish space. It
contains càdlàg functions of either finite or infinite duration. We break the space into pieces,
letting EXC(u) be the set of excursions of duration at least u:

EXC =
⋃
u>0

EXC(u).

Note that b < a⇒ EXC(b) ⊃ EXC(a), thus EXC(u) increases as u decreases. We shall put a
natural measure $ on EXC by putting a natural measure $u on EXC(u) for each u and by
showing that the family is compatible.

Consider now the excursions of the process Qt, t ≥ 0, that are in EXC(u). We saw that
they are countably many and are ordered:

E1(u), E2(u) , . . . ,

where Ek(u) is the excursion on (gk(u), dk(u)). We define

$u(A) := Ψ(u)P(E1(u) ∈ A), A ⊂ EXC(u) (measurable).

Therefore,
$u(EXC(u)) = Ψ(u).

To see that the family $u, u > 0, defines a unique measure $ on EXC, we must show that,
for b < a (whence EXC(b) ⊃ EXC(a)) the restriction of $b from EXC(b) to EXC(a) is $a.
This is equivalent to

$b(A) = $a(A) for A ⊂ EXC(a).

By the second part of Lemma 9 we have that Nb(g1(a)) is independent of the process Q after
g1(a). Hence

P(E1(a) ∈ A, Nb(g1(a)) = 0) = P(E1(a) ∈ A)P(Nb(g1(a)) = 0) = P(E1(a) ∈ A)
Ψ(a)

Ψ(b)
.

But Nb(g1(a)) = 0 means that E1(a) = E1(b). Hence

P(E1(a) ∈ A, Nb(g1(a)) = 0) = P(E1(b) ∈ A, Nb(g1(a)) = 0).

Also, Nb(g1(a)) means that the duration of E1(b) is at least a. Hence, for A ⊂ EXC(a), we
immediately get that

P(E1(b) ∈ A, Nb(g1(a)) = 0) = P(E1(b) ∈ A).

Hence, for A ⊂ EXC(a),

P(E1(b) ∈ A) = P(E1(a) ∈ A)
Ψ(a)

Ψ(b)

and this is precisely the compatibility condition.
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We now consider, for each ν > 0, such that ∆L−1
ν > 0, the excursion of the process on the

interval (L−1
ν−, L

−1
ν ):

Eν := (Qt, L
−1
ν− < t < L−1

ν ).

Recall that, thanks to the indpendent increments of L−1,

η =
∑

ν≥0:∆L−1
ν >0

δ(ν,∆L−1
ν ).

is a Poisson random measure on [0,∞) × (0,∞) with mean measure Eη(dν, dx) = dν Π(dx),
where Π is the measure defined by Π(B) = −

∫
B Ψ(dx), B ⊂ (0,∞). We shall consider instead

the random measure
ξ =

∑
ν≥0:∆L−1

ν >0

δ(ν,Eν)

on the space [0,∞) × EXC. The first thing to observe is that ξ 7→ η is a deterministic map.
Thus η is a projection of ξ onto a smaller space. The second thing to observe is that ξ is also
a Poisson random measure, thanks to the regenerativity of L. The third thing to observe is
that the mean measure of ξ is given by

Eξ(dν, dε) = dν $(dε).

We thus have

Theorem 9 (Itô’s theorem). The measure ξ =
∑

ν≥0:∆L−1
ν >0 δ(ν,Eν) is a (possibly killed)

Poisson random measure with mean measure Eξ(dν, dε) = dν $(dε).

The term “possibly killed” refers to the fact that L(∞) may not be equal to ∞.
The so-called compensation formula can be obtained easily. Let Ft = (Ft(ε), ε ∈ EXC)

be a left-continuous adapted stochastic process with values in the space of bounded and
measurable functions on EXC. Let G be the set of left endpoints of excursion intervals (the
set {inf I : I ∈ I }). For g ∈ G, let εg be the excursion starting at g. In particular, εL−1

ν
= Eν .

We then have

E
∑
g∈G

Fg(εg) = E
∫ ∞

0
dL(s)

∫
EXC

Fs(ε)$(ε).

Indeed, first observe that
∑

g∈G Fg(εg) =
∑

ν≥0:∆L−1
ν >0 FL−1

ν
(Eν), then use the compensation

formula for marked Poisson processes:

E
∑
g∈G

Fg(εg) = E
∑

ν≥0:∆L−1
ν >0

FL−1
ν

(Eν) = E
∫ ∞

0
dν

∫
EXC

FL−1
ν

(ε)$(dε)

and finally change variables in the last Lebesgue-Stieltjes integral.
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12 CHEAT SHEET (a piacere)

1. If Φ is a Poisson random measure on a general measurable space with σ-finite intensity measure EΦ(·) then
the law of Φ is characterized by the map f 7→ E exp

∫
fdΦ with f in a nice class of functionals (e.g. bounded

measurable), and it is a consequence of the independent increments property (A ∩ B = ∅ ⇒ Φ(A) ⊥⊥ Φ(B))
that the following explicit formula holds:

E exp

∫
fdΦ = exp

∫
(ef − 1)dEΦ.

If Φ lives on a “nice” space (which is at least Borel, that is, a space which such that there is an invertible
function from the space onto a Borel subset of R with the property that both the function and its inverse are
measurable; for example, Rd is a Borel space; the space D(I) of càdlàg functions on an interval I is a Borel
space; more generally, any Polish space is a Borel space), then Φ can be considered as a random discrete locally
finite set. For example, if Φ a Poisson random measure on a Euclidean space then requiring that Φ is a random
measure with values in {0, 1, 2, . . .} ∪ {∞} with the independent increments property we immediately obtain
that Φ(A) is a Poisson random variable with mean 0 ≤ EΦ(A) ≤ ∞.

2. First two moments:

E
∫
fdΦ =

∫
fdEΦ, var

∫
fdΦ =

∫
f2dEΦ.

3. A random measure Φ on a product space I×M , where I is a Borel space, is said to be marked with marks
in M and index in I if Φ({t} ×M) = 0 a.s. for all t ∈ I. This actually tells us that if (t,m), (t,m′) are points
of Φ then m = m′: there can be no two points with the same I-coordinate. A very important theorem due to
Erlang and Lévy says that such a Φ is a Poisson random measure if and only if it has independent increments.
In this case, the measure A 7→ (EΦ)(A,B) has no atoms. If t ∈ I is such that (t,m) is an atom of Φ, let m(t)
be equal to this m. Otherwise, set m to a graveyard. The collection of random variables (they are random
variables!) m(t), t ∈ I, is referred to as “Poisson point process” by some people–an unfortunate terminology.

4. If Xt, t ≥ 0, is a collection of random variables in Rd with independent increments that are continuous in
a weak sense (in probability) and have no fixed jumps, then martingale theory tells us that there is a version
of them with càdlàg paths. Using the notation ∆Xt := Xt −Xt−, define

Φ =
∑

t:∆Xt 6=0

δ(t,∆Xt).

Note that the sum is a countable sum and that Φ a marked random measure on [0,∞)× R with marks in R.
The Erlang-Lévy theorem tells us that Φ is a Poisson random measure on [0,∞)× Rd.

5. First property of EΦ, that is true by Poissonicity:

EΦ([0, t]× {x : |x| ≥ 1}) <∞.

6. An independent increments process is simple if
∑
s≤t1(∆Xs 6= 0) <∞ a.s., for all t. A simple independent

increments process without continuous component is called compound Poisson.

7. Using the fact that two martingales that cannot jump together are independent, we can show that the
“big” jumps process Xε

t :=
∑
s≤t ∆Xs1(|∆Xs| > ε) is independent of the “small” jumps process Xt −Xε

t .

8. Second property of EΦ: ∫∫
s≤t,|x|≤1

|x|2EΦ(ds, dx) <∞.
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This follows from an estimate of the characteristic function of Xε
t when ε ↓ 0:

∣∣∣EeiθXεt ∣∣∣ =

∣∣∣∣∣∣exp

∫∫
s≤t
|x|>ε

(eiθx − 1)EΦ(ds, dx)

∣∣∣∣∣∣ = exp−
∫∫

s≤t
|x|>ε

(1− cos(θx))EΦ(ds, dx).

If
∫∫
s≤t,|x|≤1

|x|2EΦ(ds, dx) = ∞ then, owing to 1 − cos(θx) = O(|x|2), we have EeiθX
ε
t → 0 as ε ↓ 0, a

contradiction since |EeiθX
ε
t | ≥ |EeiθXt |.

9. Whereas sums of big jumps of magnitude, say, larger than 1,

X1
t =

∑
s≤t

∆Xs1(|∆Xs| > 1) =

∫∫
s≤t,|x|>1

xΦ(ds, dx),

can be defined without any problem, this is not the case with small jumps. However,

Y 1
t =

∫∫
s≤t,|x|≤1

x[Φ(ds, dx)− EΦ(ds, dx)]

does make sense, owing to the second property of EΦ. To abbreviate, write X1 =
∫
|x|>1

xdΦ, Y 1 =
∫
|x|≤1

x[dΦ−
dEΦ]. Since we cannot write X1 + Y 1 =

∫
|x|>1

xdΦ +
∫
|x|≤1

xdΦ−
∫
|x|≤1

xdEΦ =
∫
Rd0
xdΦ−

∫
|x|≤1

xdEΦ, from

which it would have been obvious that X and X1 + Y 1 have the same jumps, we must make sure about the
validity of the latter in a different way. To this end, note that

Y ε,1t =

∫
s≤t,ε<|x|≤1

x[Φ(ds, dx)− EΦ(ds, dx)]

is a simple II process that converges to Y 1
t in the sense that

E sup
s≤t
|Y ε,1s − Y 1

s |2 −−−→
ε→0

0.

The reason is:

E sup
s≤t
|Y ε,1s − Y 1

s |2 ≤(a) 2E|Y ε,1t − Y 1
t |2 =(b) 2

∫∫
s≤t,|x|≤ε

|x|2Eη(ds, dx).

(a) is Doob’s inequality; (b) is the variance formula for Poisson random measures. Since X1 +Y 1 has the same
jumps as X, the process Z := X − (X1 + Y 1) is a.s. continuous, with continuous mean and covariance and
independent increments. Hence Z is Gaussian. (This requires a version of the central limit theorem.) Since it
has no jumps, it is independent of X1 + Y ε,1, for all ε > 0. Hence Z and X1 + Y 1 are independent.

10. Putting things together, we have found that: There exists a Poisson random measure Φ on [0,∞)× Rd
such that ∫∫

[0,t]×Rd
|x|2 ∧ 1 EΦ(ds, dx) <∞,

and a Gaussian process Z with independent increments and continuous mean and covariance, such that

Xt = Zt +

∫∫
s≤t,|x|≤1

x[Φ(ds, dx)− EΦ(ds, dx)] +

∫∫
s≤t,|x|>1

xΦ(ds, dx).

11. Specializing to Lévy processes, we find (due to translation invariance) that in addition we need EZt = bt,
for some b ∈ Rd, EZs⊗Zt = σ(s∧ t), for some d×d positive semidefinite matrix σ, and EΦ(ds, dx) = dsΠ(dx),
for some σ-finite measure Π on Rd with no mass at 0 such that∫

Rd
|x|2 ∧ 1 Π(dx) <∞.

12. From the above we read immediately the characteristic function:

EeiθXt = e−tψ(θ) = exp

{
i〈θ, b〉 − 1

2
〈θ, σθ〉+

∫
Rd

[ei〈θ,x〉 − 1− i〈θ, x〉1(|x| ≤ 1)] Π(dx)

}
.
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13. Let µ be an infinitely divisible (ID) probability measure on Rd: for all n, µ = µ?nn and µn is also
probability. It can be shown that µn ⇒ δ0. Then µ̂n(θ) =

∫
eiθxµn(dx) −−−−→

n→∞
1, uniformly in −ε ≤ θ ≤ ε,

implying that µ̂(θ) 6≡ 0. Hence ψ(θ) := − log µ̂(θ) is well defined function from R to C and we can choose a
continuous branch of it. So µ̂(θ) = e−ψ(θ). Similarly, µ̂n(θ) = e−ψn(θ) and ψ(θ) = 1

n
ψn(θ). Since µ̂n(θ) =

e−
1
n
ψ(θ) is a ch.f., so is any integer power µ̂n(θ)m = e−

m
n
ψ(θ). By Bôchner’s theorem, e−tψ(θ) is a ch.f. for each

t. Let µt be the probability corresponding to it. Since e−tψ(θ) = e−(t−tk)ψ(θ) · · · e−(t2−t1)ψ(θ)e−t1ψ(θ), we have,
by Kolmogorov’s consistency, the existence of a collection (Xt, t ≥ 0) of random variables with independent
increments. Also, e−tψ(θ) −−−→

t→0
1, the process is Lévy. Hence the Lévy-Khinchine formula holds. We conclude

that the Lévy-Khnichine formula holds for any ID distribution.

14. The paths of the Lévy process have bounded variation ⇐⇒ σ = 0 and
∫
|x| ∧ 1 Π(dx) < ∞. In this

case, there is no need for compensation for the small jumps, so we can write:

Xt = bt+

∫ t

0

∫
Rd
x η(ds, dx)

EeiθX1 = exp

[
i〈θ, b〉+

∫
Rd

[ei〈θ,x〉 − 1] Π(dx)

]
The constant b is referred to as the drift. When d = 1, we can decompose X as the difference of two mutually
singular increasing processes:

Xt = bt+

∫ t

0

∫
R+

x Φ(ds, dx)−
∫ t

0

∫
R−

(−x) Φ(ds, dx)

(Put b together with the first or the second integral, according to its sign.) Each of the last two terms is called
subordinator.

15. A subordinator should be thought of as continuous-time analog of the points of a renewal process. Thus
the inverse of a subordinator corresponds to the counting process of the renewal process. If X is a subordinator
then

Xt = δt+

∫ t

0

∫
R+

xΦ(ds, dx).

The Laplace transform Ee−αXt exists for at least all α ≥ 0 and

Ee−αXt = e−tψ(iα) =: e−tϕ(α),

where

ψ(θ) = −iδθ +

∫
R+

(1− eiθx)Π(dx)

so,

ϕ(α) = ψ(iα) = δα+

∫
(1− e−αx)Π(dx).

Just as a renewal process can be defective if the probability of the interrenewal time being equal to infinity is
positive, so can a Lévy process be defective, or “killed” as is commonly said. “Killing a subordinator at rate
λ” means “consider the subordinator up to an independent exponential random variable τλ of rate λ”. Note
that we do not necessarily wish to kill a subordinator for fun but that the killing may happen out of necessity
rather than caprice. (See the analogy with the découpage de Lévy and its construction using an independent
geometric random variable.) Killing at rate λ simply means add λ to the Laplace exponent:

E[e−αXt ; t < τλ] = exp

{
−
(
λ+ δα+

∫
(1− e−αx)Π(dx)

)}
.

16. A compound Poisson process is a random walk Sn = ξ1 + · · ·+ξn where the time variable n is substituted
by a Poisson process Nt (of rate, say, λ):

Xt = SNt .

32



If F is the law of ξ1, we have

EeiθXt = exp

{
t

∫
(eiθx − 1)λF (dx)

}
.

So Π(dx) = λF (dx) is a finite measure with total mass Π(R) = λ.

17. The term “drift” for a general Lévy process means nothing. It is defined if and only if the process has
paths of bounded variation. There is a discrepancy from random walk terminology here. For, in discrete time,
the drift of the random walk Sn = ξ1 + · · · + ξn often refers to ESn = (Eξ1)n, if it exists. A Lévy process
is integrable, i.e. EXt < ∞ if and only if

∫
|x|>1

|x|Π(dx) < ∞. For an integrable Lévy process, it is often

convenient to separate the mean. That is, write it as

Xt = µt+ σBt +

∫ t

0

∫
x [η(ds, dx)− dsΠ(dx)]

where µ is the mean per unit of time, σBt the Brownian component, and the rest is the zero-mean jump part.
Then

EeiθX1 = exp

{
i〈θ, µ〉 − 1

2
〈θ, σθ〉+

∫
Rd

[ei〈θ,x〉 − 1− i〈θ, x〉] Π(dx)

}
When (i) the jump part has finite variation (

∫
|x| ∧ 1 Π(dx) < ∞) and (ii) the first moment is finite

(
∫
|x|>1

|x| Π(dx) <∞), we are in the happy situation that∫
|x|Π(dx) <∞

and then we can either decide to exhibit the mean (as above) or exhibit the drift:

Xt =

[
µ−

∫
Rd
x Π(dx)

]
t+ σBt +

∫ t

0

∫
Rd
x η(ds, dx)

18. Duality: In dicrete time, duality means taking the sum ξ1 + · · ·+ ξn in reverse order: ξ1 + · · ·+ ξn. Then
Xt, 0 ≤ t ≤ n, has the same law as Xn −Xt, 0 ≤ t ≤ n, for each n. If we think of increments Xt −Xs rather
than values, duality becomes more transparent. For each t, the collection Xs, 0 ≤ s ≤ t, of random variables
has the same finite-dimensional distributions as the collection Xt−Xt−s, 0 ≤ s ≤ t. As processes with values in
D[0, t], the two collections do not have identical law (simply because the second one is left-continuous), so the
remedy is to replace the second one by Xt −X(t−s)−, 0 ≤ s ≤ t. This does not destroy the finite-dimensional
distributions but makes it right-continuous. Then we have that the two processes are identical in law as random

elements of D[0, t] for each t ≥ 0. Duality implies that (Xt, Xt −Xt)
(d)
= (Xt −Xt,−Xt). This leads to the

following: P(Xt = Xt) = 0 for all t if and only if X enters (−∞, 0) immediately. Indeed, P(Xt = Xt) = 0 for
all t ⇐⇒ P(−Xt = 0) = 0 for all t ⇐⇒ P(Xt < 0) = 1 for all t.

19. Let Φ be a marked Poisson process on [0,∞)×M with mean measure EΦ(dt, dm) = dt π(dm). If (t,m)
is an atom of Φ then m is uniquely defined and, as above, denoted by m(t). Introduce the natural σ-algebra Gt
generated by the restriction on [0, t]. Let Ft = (Ft(m),m ∈ M), t ≥ 0, be a left-continuous stochastic process
with values in the space of bounded and measurable functions on M , such that Ft is measurable with respect
to Gt for each t. Then

E
∫∫

Ft(m)Φ(dt, dm) = E
∑
t≥0

Φ{(t,m)}=1

Ft(m(t)) = E
∫ ∞

0

dt

∫
M

Ft(m)π(dm)

If π is a finite measure then we can enumerate the points of Φ in increasing order of the t-coordinate:
(T1, Z1), (T2, Z2), . . ., with T1 < T2 < · · · Suppose also that F : [0,∞) × M → R+ is measurable. We
then have

E
∑
n

F (Tn, Zn) =

∫ ∞
0

dt

∫
M

F (t,m)π(dm).

Such a formula is provable from within the framework of Palm probabilities as well. It is also known as
Campbell’s formula.
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20. Let Φ be a random measure on some Polish space E. This means that Φ is a random variable on

some probability space (Ω,F ,P) with values in the space of measures on E. Assume that the mean measure

Λ(B) := EΦ(B) is locally finite. We can then capture the notion of conditioning on the measure Φ having

mass at a point x ∈ E by using a Radon-Nikodým derivative. Observe that for all A ∈ F the so-called

Campbell measure B 7→ EΦ(B)1A is absolutely continuous with respect to Λ. Then the Radon-Nikodým

derivative of the Campbell measure with respect to Λ exists and is denoted by Px(A). Thus, formally, Px(A) =

E[Φ(dx)1A]/Λ(dx). Then Px is a probability measure on Ω and is called the Palm probability of P with respect

to Φ at the point x. If E is a group and if the law of Φ is invariant with respect to the group actions then

Px is uniquely determined by P 0 where 0 is taken to be the neutral element of the group. Cambell’s formula

follows by writing the Radon-Nikodým derivative in integral form.
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13 EXERCISES

1. Think about the statement X1
(d)
= X2. Assume that, for i = 1, 2, Xi : Ωi → S, and that

Fi is a σ-algebra on Ωi, that S is a σ-algebra on S and that Pi is a probability measure

on Fi. Then convince yourselves that X1
(d)
= X2 means P1◦X

−1
1 = P2◦X

−1
2 .

2. If Z1, Z2, . . . are random elements and if τ is a random element of N, what kind of
random element is (Z1, . . . , Zτ ) (in which space does it take values)? What about
(Z1, . . . , Zτ−1)?
Hint: If the Zi take values in a space S then (Z1, . . . , Zτ ) takes values in S∗ =

⋃
n∈N S

n if

τ < ∞ or in SN if τ = ∞. Suppose S comes with a σ-algebra S . Then you should be able to

attach the appropriate σ-algebra in the space of values of (Z1, . . . , Zτ ).

3. Prove the découpage de Lévy. Prove the simulation part of the découpage de Lévy.

4. Let Z1, Z2, . . . be a sequence of random elements forming a Markov process, that is,
(Z1, . . . , Zn−1, Zn) is independent of (Zn, Zn+1, . . .) conditional on Zn. Let σ be a stop-
ping time, that is, for each n we have 1{σ=n} = fn(Z1, . . . , Zn) for some measurable
function fn. Assume that P(σ <∞) = 1. Show that (Z1, . . . , Zσ−1, Zσ) is independent
of (Zσ, Zσ+1, . . .) conditional on Zσ. In particular, prove the assertion in (1).

5. Let X1, X2, . . . be a sequence of random variables. Define the process reversed at t by

X̂n := Xt −Xt−n, 0 ≤ n ≤ t.

Let α be any stopping time for Xn, n ≥ 1 and let α = α1 < α2 < · · · be its iterates.
Denote by α[t] the last occurrence of αk such that αk ≤ t. We shall use the unortho-
dox notation α[X1, . . . , Xt; t] to denote the fact that this last occurrence is a certain
deterministic function of X1, . . . , Xt. That is, given t and the piece (X1, . . . , Xt) of the
process there is a rule that tells us what the last occurrence is. This rule we denote by
α[X1, . . . , Xt; t]. We say that a stopping β is dual to α if, for each t,

α[X1, . . . , Xt; t] + β[X̂1, . . . , X̂t; t] = t.

Note that if β is dual to α then α is dual to β because
̂̂
X = X. In this sense, the first

time k such that Xk > 0 and the first time k such that Xk ≤ 0 are dual of one another.

6. Prove the last equality in (2), namely that inf{n > αk : Xn > Xαk} = inf{n > αk :
Xn > Xn−1}, using simple logic.

7. Show the equality of the two expressions for L(t) in (3). Namely, if α1 < α2 < · · ·
is a finite or infinite strictly increasing sequence of real numbers then

∑∞
k=1 1αk≤t =

sup{k ≥ 1 : αk ≤ t}.

8. Justify (5), i.e. that Xt = XαL(t)
.

9. If Z1, Z2, . . . are random elements in, say, R, if A is a Borel subset of R, and if τ =
inf{n ≥ 1 : Zn ∈ A}, then show that Z1, Z2, . . . is i.i.d. killed at rate P(τ = ∞).
(Convention: inf ∅ =∞; so {∀n ∈ N Zn 6∈ A} = {τ =∞}.)
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10. Recall that the k-th cycle is defined as C(k) = (ξn, δn, αk−1 < n ≤ αk). We defined I
to be the index of the first cycle containing a head. We defined L(T ) to be the last αk
that is ≤ T . Show (7): i.e. that I = L(T ) + 1.
Solution: Recall that cycle C(k) has support αk−1 < n ≤ αk. The index I is the index of the
first cycle containing a head. But heads occur first at time T + 1. Thus αI−1 < T + 1 ≤ αI or
αI−1 ≤ T < αI . By (4) we have

L(T ) = I − 1.

11. Draw the picture in (8).

12. Prove the last relation of Lemma 2: t− αL(t) = sup{n ≤ t : X̂n ≤ X̂n−1}.
Solution: If I ⊂ [0, t] is empty then we define sup I = 0 and inf I = t. With this convention, we
write

αL(t) = sup{1 ≤ n ≤ t : Xn > X0, . . . , Xn−1}
= inf{0 ≤ n ≤ t− 1 : Xn ≥ Xn+1, . . . , Xt} (by pure logic)

= inf{0 ≤ n ≤ t− 1 : Xt −Xn ≤ Xt − Sn+1, . . . , Xt −Xt}

= inf{0 ≤ n ≤ t− 1 : X̂t−n ≤ X̂t−n−1, . . . , X̃0}

Hence

t− αL(t) = sup{1 ≤ t− n ≤ t : X̂t−n ≤ X̂t−n−1, . . . , X̂0}

= sup{1 ≤ n ≤ t : X̂n ≤ X̂n−1, . . . , X̂0}.

13. Take the limit as q ↑ 1 in Baxter’s equations and thus derive a formula for EeiθXα
(interpreted as E(eiθXα ;α <∞))

14. Consider a symmetric random walk with continuous stationary-independent increments,

that is, ξ1
(d)
= −ξ1 and P(ξ1 = x) = 0 for all x ∈ R. Show that Eqα = 1−

√
1− q. Find

a formula for P(α = n), for n ∈ N ∪ {∞}.

15. Let Xn, n = 1, 2, . . ., X0 = 0, be a general random walk in R. Let T be an independent
geometric0 random variable, P(T = n) = qnp, n ≥ 0, let XT = max(X0, . . . , XT ) and let
GT be the last n ≤ T such that XT = XT (the last time that the maximum is achieved;
this could be unique, e.g., if the law of the increment is continuous). Derive the joint
Laplace transform of (GT , XT ): For η, θ ≥ 0,

Ee−ηGT−θXT = exp

{∑
n≥1

∫
(0,∞)

(e−ηn−θx − 1)n−1qnP(Xn ∈ dx)

}

Hint: Let α be ANY stopping time and L(t) the counting process of its iterates. From the “first
to last” Proposition 1 aplied to the random walk (n,Xn) we have

EzαL(T )e
iθXαL(T ) =

1− Eqα

1− EqαzαeiθXα
.

Let α be THE stopping time inf{n > 0 : Xn > 0}. Then αL(T ) = GT and XαL(T )
= XT (see

(5) and Exercise 8). Hence the last display is precisely the joint transform of (GT , XT ). Now

use Baxter’s equations (Proposition 2) in the right-hand side.
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16. Prove Blumenthal’s 0-1 law (11).
Hint: Use independent increments and Kolmogorov’s 0-1 law: If ξ1, ξ2, . . . are independent ran-

dom elements on a common probability space then the tail σ-algebra T =
⋂
n σ(ξn, ξn+1, . . .) is

independent of itself and that every A ∈ T has probability 0 or 1.

17. Let Xt, t ≥ 0, be a general Lévy process starting from X0 = 0 and define Qt = Xt−Xt.
Recall the times return r and sojourn s for Q: r = inf{t > 0 : Qt = 0}, s = inf{t > 0 :
Qt > 0}. Show that r = 0 iff inf{t > 0 : Xt ≤ 0} = 0. This is a deterministic exercise.
(It turns out that this holds iff

∫ ε
0 t
−1 P(Xt ≤ 0) dt =∞ for some, and hence all, ε > 0.)

18. Prove the decomposition Lemma 4.
Hint: For every x ∈ U show that there is a largest open interval Ix included in U and containing

x. Show that its endpoints are not in U . Then define I := {Ix : x ∈ U}. Show that this works.

Show that it is countable. Show that it is unique.

19. For an open set U ⊂ R let E be the (necessarily countable) set of endpoints of the
components of U . Give an example of a set U such that E is a strict subset of U c and
such that U c is nowhere dense.

20. An excursion of Q over a component (g, d) of the complement of the set Z is a random
element. Of which space? See the analogy to Exercise 2.

21. Although it is obvious that, except in trivial cases, every path has a u-excursion, it is a
little less obvious that there is a u-excursion for every path a.s. In other words, prove
Lemma 5,
Hint: Uses the strong Markov property.

22. Prove Lemma 6.

23. Show that the right endpoints of all excursion intervals are stopping times (but that the
left ones are not)–Lemma 7.

24. Show that, for x < y, P(Nx(g1(y)) = k) =
(

1− Ψ(y)
Ψ(x)

)k
Ψ(y)
Ψ(x) , k = 0, 1, 2, . . . and also

show the independence claimed in Lemma 9.

25. Supply the details in the claim of Lemma 13 that L−1
ν , ν ≥ 0, has independent incre-

ments. Show that, for ν, µ ≥ 0, L−1
ν+µ − L−1

ν ⊥⊥ FL−1
ν

a.s. on L−1
ν <∞.

26. Show if a strong Markov process Qt, t ≥ 0, starts from some point x in its state space and
remains at x for a positive amount of time σ then σ must be exponentially distributed
and Qσ 6= x a.s. (The following example is instructive: If σ is an exponential random
variable, the process Xx

t := x+ (t− σ1x=0)+, t ≥ 0, is Markov with state space [0,∞),
but not strong Markov.)

27. Verify the second equation in (14) and the last one. The last one is due to the so-called
Frullani integral. Theorem: let f : (0,∞) → R be measurable and integrable over any
compact interval. Assume that f(0) := limx→0 f(x) and f(∞) := limx→∞ f(x) exist.
Then, for a, b > 0,∫ ∞

0
(f(ax)− f(bx))x−1dx = (f(0)− f(∞)) log(a/b).
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Prove this under the additional assumption that f is continuously differentiable. To see
why it should be true in general, use scale-invariance: The left-hand side is invariant
under any map (a, b) 7→ (ta, tb) where t is a positive constant. Hence it is a function of
a/b. Using measure-theoretic arguments, one can show that it is a measurable function
and from this that it is a multiple of log(a/b).
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