Self-Similar Markov Processes and SDEs

Leif Döring, Mannheim University, Germany

11. Juli 2019

Goal

Along the example of self-similar Markov processes we try to obtain a better understanding of how to use generators and SDEs (with jumps).

Reminder from Andreas lectures without further details: A pssMp can be restarted from 0 if and only if $\mathbb{E}[e^{\lambda\xi_1}] = 1$ for some $\lambda \in (0, 1/\alpha)$.

In these lectures we will go through SDEs, generators, etc. with the ultimative goal in mind to understand the "Cramér condition" in the theorem.

<u>Warning</u>: We do NOT arrive at the most general results for ssMps but get to know a different point of view inspired by the SDE approach to CSBPs (or affine processes) due to (Bravo/Caballero/Lambert and Dawson/Li).

Self-similar Markov processes (ssMp)

A strong Markov process $(X_t : t \ge 0)$ on \mathbb{R} with RCLL paths, with probabilities \mathbb{P}_x , $x \in \mathbb{R}$, is a ssMp if there exists an index $\alpha \in (0, \infty)$ such that, for all c > 0 and $x \in \mathbb{R}$,

 $(cX_{tc^{-lpha}}:t\geq 0)$ under \mathbb{P}_{x}

is equal in law to

 $(X_t : t \ge 0)$ under \mathbb{P}_{cx} .

nnssMp if sample paths are non-negative.

pssMp if sample paths are positve and absorbed at the origin.

Content

- Examples of pssMps related to Brownian SDEs
- Lamperti's representation for pssMps and generators
- Lamperti SDE and jump diffusions (jump SDEs)

Content

- Examples of pssMps related to Brownian SDEs
- Lamperti's representation for pssMps and generators
- Lamperti SDE and jump diffusions (jump SDEs)

• Brownian motion (B_t) is a ssMp with index 2

• stopped Brownian motion $(B_t \mathbb{1}_{(T_0 > t)})$ is a pssMp with index 2

• Bessel processes of dimension δ - $Bes(\delta)$ - i.e. solutions of

$$dX_t = \frac{\delta - 1}{2} \frac{1}{X_t} \, dt + dB_t$$

give pssMp with index 2 (modulus of Brownian motion).

• squared-Bessel processes of dimension δ - $Bes^2(\delta)$ - i.e. solutions of

$$dX_t = \delta \, dt + 2\sqrt{X_t} dB_t$$

give pssMps with index 1.

- Brownian motion (B_t) is a ssMp with index 2
- stopped Brownian motion $(B_t 1_{(T_0 > t)})$ is a pssMp with index 2
- Bessel processes of dimension δ $Bes(\delta)$ i.e. solutions of

$$dX_t = \frac{\delta - 1}{2} \frac{1}{X_t} dt + dB_t$$

give pssMp with index 2 (modulus of Brownian motion).

• squared-Bessel processes of dimension δ - $Bes^2(\delta)$ - i.e. solutions of

$$dX_t = \delta \, dt + 2\sqrt{X_t} dB_t$$

give pssMps with index 1.

- Brownian motion (B_t) is a ssMp with index 2
- stopped Brownian motion $(B_t 1_{(T_0 > t)})$ is a pssMp with index 2
- Bessel processes of dimension δ $Bes(\delta)$ i.e. solutions of

$$dX_t = \frac{\delta - 1}{2} \frac{1}{X_t} dt + dB_t$$

give pssMp with index 2 (modulus of Brownian motion).

• squared-Bessel processes of dimension δ - $Bes^2(\delta)$ - i.e. solutions of

$$dX_t = \delta \, dt + 2\sqrt{X_t} dB_t$$

give pssMps with index 1.

- Brownian motion (B_t) is a ssMp with index 2
- stopped Brownian motion $(B_t 1_{(T_0 > t)})$ is a pssMp with index 2
- Bessel processes of dimension δ $Bes(\delta)$ i.e. solutions of

$$dX_t = \frac{\delta - 1}{2} \frac{1}{X_t} dt + dB_t$$

give pssMp with index 2 (modulus of Brownian motion).

• squared-Bessel processes of dimension δ - $Bes^2(\delta)$ - i.e. solutions of

$$dX_t = \delta \, dt + 2\sqrt{X_t} dB_t$$

give pssMps with index 1.

- Brownian motion (B_t) is a ssMp with index 2
- stopped Brownian motion $(B_t 1_{(T_0 > t)})$ is a pssMp with index 2
- Bessel processes of dimension δ $Bes(\delta)$ i.e. solutions of

$$dX_t = \frac{\delta - 1}{2} \frac{1}{X_t} dt + dB_t$$

give pssMp with index 2 (modulus of Brownian motion).

• squared-Bessel processes of dimension δ - $Bes^2(\delta)$ - i.e. solutions of

$$dX_t = \delta \, dt + 2\sqrt{X_t} dB_t$$

give pssMps with index 1.

How to check self-similarity?

There is no general approach!

- For (B_t) show that scaled process is also a BM.
- For $(B_t \mathbb{1}_{(T_0 > t)})$ consider the joint process $(B_t, \inf_{s \le t} B_t)$.
- For the SDE examples use SDE theory.

Self-similarity for $Bes^2(\delta)$ - the SDE way

$$cX_{tc^{-1}} = c\left(X_0 + \delta tc^{-1} + \int_0^{tc^{-1}} 2\sqrt{X_s} \, dB_s\right)$$

= $cX_0 + \delta t + c \int_0^t 2\sqrt{X_{sc^{-1}}} \, d(B_{sc^{-1}})$
= $cX_0 + \delta t + \int_0^t 2\sqrt{cX_{sc^{-1}}} \, d(\sqrt{c}B_{sc^{-1}})$
=: $cX_0 + \delta t + \int_0^t 2\sqrt{cX_{sc^{-1}}} \, dW_t$.

Hence, (X_t) and $(cX_{tc^{-1}})$ both satisfy the same SDE

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t$$

driven by some Brownian motions.

Why does this imply $Bes^2(\delta)$ is ssMp? \rightarrow Need SDE uniqueness theory.

Self-similarity for $Bes^2(\delta)$ - the SDE way

$$cX_{tc^{-1}} = c\left(X_0 + \delta tc^{-1} + \int_0^{tc^{-1}} 2\sqrt{X_s} \, dB_s\right)$$

= $cX_0 + \delta t + c \int_0^t 2\sqrt{X_{sc^{-1}}} \, d(B_{sc^{-1}})$
= $cX_0 + \delta t + \int_0^t 2\sqrt{cX_{sc^{-1}}} \, d(\sqrt{c}B_{sc^{-1}})$
=: $cX_0 + \delta t + \int_0^t 2\sqrt{cX_{sc^{-1}}} \, dW_t$.

Hence, (X_t) and $(cX_{tc^{-1}})$ both satisfy the same SDE

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t$$

driven by some Brownian motions.

Why does this imply $Bes^2(\delta)$ is ssMp? \rightarrow Need SDE uniqueness theory.

Self-similarity for $Bes^2(\delta)$ - the SDE way

$$cX_{tc^{-1}} = c\left(X_0 + \delta tc^{-1} + \int_0^{tc^{-1}} 2\sqrt{X_s} \, dB_s\right)$$

= $cX_0 + \delta t + c \int_0^t 2\sqrt{X_{sc^{-1}}} \, d(B_{sc^{-1}})$
= $cX_0 + \delta t + \int_0^t 2\sqrt{cX_{sc^{-1}}} \, d(\sqrt{c}B_{sc^{-1}})$
=: $cX_0 + \delta t + \int_0^t 2\sqrt{cX_{sc^{-1}}} \, dW_t$.

Hence, (X_t) and $(cX_{tc^{-1}})$ both satisfy the same SDE

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t$$

driven by some Brownian motions.

Why does this imply $Bes^2(\delta)$ is ssMp? \rightarrow Need SDE uniqueness theory.

Consider the 1dim SDE

$$dX_t = a(X_t)dt + \sigma(X_t)dB_t, \quad X_0 \in \mathbb{R},$$

driven by a BM.

Notation (Solutions)

• A (weak) solution is a stochastic process satisfying almost surely the integral equation

$$X_t = X_0 + \int_0^t a(X_s) ds + \int_0^t \sigma(X_s) dB_s, \quad X_0 \in \mathbb{R}.$$

• A solution is called strong if it is adapted to the filtration generated by the driving noise (*B*_t).

Reference e.g. Karatzas/Shreve

Question: Which SDEs can you solve explicitly?

Not many, only if Itō's formula helps. Remember: For $f \in C^2$ Itō's formula for semimartingales gives

$$df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)d\langle X \rangle_t$$

= $f'(X_t)a(X_t)dt + f'(X_t)\sigma(X_t)dB_t + \frac{1}{2}f''(X_t)\sigma^2(X_t)dt$

Example: Play around with the exponential function to solve

$$dX_t = aX_t dt + \sigma X_t dB_t.$$

Example: Which SDE is solved by $X_t = B_t^3$ \rightarrow blackboard?

Consider the SDE

$$dX_t = a(X_t)dt + \sigma(X_t)dB_t, \quad X_0 \in \mathbb{R}.$$

Notation (Uniqueness)

- We say weak uniqueness holds if any two weak solutions have the same law.
- We say pathwise uniqueness holds if any two weak solutions are indistinguishable.

Example: Tanaka's SDE

$$dX_t = sign(X_t)dB_t$$

has a weak solution, has no strong solution, weak uniqueness holds, pathwise uniqueness is wrong. *sign* is a bad function!

ightarrow blackboard

Leif Döring

Consider the SDE

$$dX_t = a(X_t)dt + \sigma(X_t)dB_t, \quad X_0 \in \mathbb{R}.$$

Notation (Uniqueness)

- We say weak uniqueness holds if any two weak solutions have the same law.
- We say pathwise uniqueness holds if any two weak solutions are indistinguishable.

Example: Tanaka's SDE

$$dX_t = sign(X_t) dB_t$$

has a weak solution, has no strong solution, weak uniqueness holds, pathwise uniqueness is wrong. *sign* is a bad function!

 \rightarrow blackboard

Leif Döring

Theorem (Itō)

If a and σ are Lipschitz continuous, then there is a unique strong solution.

<u>Proof:</u> Fixpoint theorem in good process space \rightarrow constructive. <u>Problem:</u> No interesting function is globally Lipschitz.

Theorem

If a and σ are locally Lipschitz and grow at most linearly, then there is a unique strong solution.

Problem: Many interesting functions are not locally Lipschitz.

Theorem (Strook/Varadhan)

If a and σ are bounded and continuous, then there is a weak solution.

Theorem (Itō)

If a and σ are Lipschitz continuous, then there is a unique strong solution.

<u>Proof:</u> Fixpoint theorem in good process space \rightarrow constructive.

Problem: No interesting function is globally Lipschitz.

Theorem

If a and σ are locally Lipschitz and grow at most linearly, then there is a unique strong solution.

Problem: Many interesting functions are not locally Lipschitz.

Theorem (Strook/Varadhan)

If a and σ are bounded and continuous, then there is a weak solution.

Theorem (Itō)

If a and σ are Lipschitz continuous, then there is a unique strong solution.

<u>Proof:</u> Fixpoint theorem in good process space \rightarrow constructive.

<u>Problem</u>: No interesting function is globally Lipschitz.

Theorem

If a and σ are locally Lipschitz and grow at most linearly, then there is a unique strong solution.

Problem: Many interesting functions are not locally Lipschitz.

Theorem (Strook/Varadhan)

If a and σ are bounded and continuous, then there is a weak solution.

Theorem

Pathwise uniqueness implies weak uniqueness.

Theorem

Weak existence and pathwise uniqueness imply strong existence.

Theorem

Weak uniqueness implies strong Markov and Feller properties.

Theorem (Yamada/Watanabe - Brownian case)

If *a* is locally Lipschitz and σ is locally $\frac{1}{2}$ -Hölder, then pathwise uniqueness holds.

ightarrow blackboard

Note: Apply same strategy whenever you have an Ito formula!

Theorem

Pathwise uniqueness implies weak uniqueness.

Theorem

Weak existence and pathwise uniqueness imply strong existence.

Theorem

Weak uniqueness implies strong Markov and Feller properties.

Theorem (Yamada/Watanabe - Brownian case)

If *a* is locally Lipschitz and σ is locally $\frac{1}{2}$ -Hölder, then pathwise uniqueness holds.

ightarrow blackboard

Note: Apply same strategy whenever you have an Ito formula!

Theorem

Pathwise uniqueness implies weak uniqueness.

Theorem

Weak existence and pathwise uniqueness imply strong existence.

Theorem

Weak uniqueness implies strong Markov and Feller properties.

Theorem (Yamada/Watanabe - Brownian case)

If *a* is locally Lipschitz and σ is locally $\frac{1}{2}$ -Hölder, then pathwise uniqueness holds.

ightarrow blackboard

Note: Apply same strategy whenever you have an Itō formula!

Theorem

Pathwise uniqueness implies weak uniqueness.

Theorem

Weak existence and pathwise uniqueness imply strong existence.

Theorem

Weak uniqueness implies strong Markov and Feller properties.

Theorem (Yamada/Watanabe - Brownian case)

If a is locally Lipschitz and σ is locally $\frac{1}{2}$ -Hölder, then pathwise uniqueness holds.

$\rightarrow \mathsf{blackboard}$

Note: Apply same strategy whenever you have an Ito formula!

<u>Remarks:</u>

- To prove pathwise uniqueness there is a strategy!
- There is no general strategy to prove weak uniqueness!

This is a strange problem: Only know how to proceed in the harder case.

<u>Note:</u> Results (in law) extend to general stochastic equations (Kurtz).

<u>Note:</u> Pathwise uniqueness results differ for different noise (e.g. Lévy); proofs use same strategy but ugly.

<u>Remarks:</u>

- To prove pathwise uniqueness there is a strategy!
- There is no general strategy to prove weak uniqueness!

This is a strange problem: Only know how to proceed in the harder case.

Note: Results (in law) extend to general stochastic equations (Kurtz).

<u>Note:</u> Pathwise uniqueness results differ for different noise (e.g. Lévy); proofs use same strategy but ugly.

<u>Remarks:</u>

- To prove pathwise uniqueness there is a strategy!
- There is no general strategy to prove weak uniqueness!

This is a strange problem: Only know how to proceed in the harder case.

Note: Results (in law) extend to general stochastic equations (Kurtz).

<u>Note:</u> Pathwise uniqueness results differ for different noise (e.g. Lévy); proofs use same strategy but ugly.

Question

How would you construct a positive strong solution for

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t, \quad X_0 = 0,$$

for $\delta > 0$? Note that

- $a \equiv \delta$ is Lipschitz
- $\sigma(x) = 2\sqrt{x}$ is $\frac{1}{2}$ -Hölder

For $\delta \leq 0$ there is no positive solution (positive submartingales are absorbed at 0 or comparison theorem).

A Counterexample

The SDE

$$dX_t = |X_t|^\beta dB_t, \qquad X_0 = 0,$$

has precisely one solution $X_t \equiv 0$ if $\beta \geq \frac{1}{2}$ ($\frac{1}{2}$ -Hölder case).

For $\beta < \frac{1}{2}$ there are infinitely many solutions.

The equation has only one solution $X\in\mathcal{S}$ where

$$\mathcal{S} = \left\{ (X_t)_{t \ge 0} : \int_0^\infty \mathbb{1}_{(X_s = 0)} \, ds = 0 \, \text{a.s.}
ight\}$$

Very hard, due to Bass/Burdy/Chen.

A Counterexample

The SDE

$$dX_t = |X_t|^\beta dB_t, \qquad X_0 = 0,$$

has precisely one solution $X_t \equiv 0$ if $\beta \geq \frac{1}{2}$ ($\frac{1}{2}$ -Hölder case).

For $\beta < \frac{1}{2}$ there are infinitely many solutions.

The equation has only one solution $X\in\mathcal{S}$ where

$$\mathcal{S} = \left\{ (X_t)_{t \ge 0} : \int_0^\infty \mathbb{1}_{(X_s = 0)} \, ds = 0 \, \text{a.s.}
ight\}$$

Very hard, due to Bass/Burdy/Chen.

A Counterexample

The SDE

$$dX_t = |X_t|^{\beta} dB_t, \qquad X_0 = 0,$$

has precisely one solution $X_t \equiv 0$ if $\beta \geq \frac{1}{2}$ ($\frac{1}{2}$ -Hölder case).

For $\beta < \frac{1}{2}$ there are infinitely many solutions.

The equation has only one solution $X \in \mathcal{S}$ where

$$\mathcal{S}=\left\{(X_t)_{t\geq 0}:\int_0^\infty \mathbb{1}_{(X_s=0)}\,ds=0\,\, ext{a.s.}
ight\}$$

Very hard, due to Bass/Burdy/Chen.

Another Counterexample

The Itō-Watanabe SDE

$$dX_t = 3X_t^{1/3}dt + 3X_t^{2/3}dB_t, \quad X_0 = 0, \tag{1}$$

has infinitely many solutions.

<u>But:</u> The SDE has only one positve solution in S.

Question: Can you relate all solutions to the solutions in S?

Another Counterexample

The Itō-Watanabe SDE

$$dX_t = 3X_t^{1/3}dt + 3X_t^{2/3}dB_t, \quad X_0 = 0,$$
(1)

has infinitely many solutions.

<u>But:</u> The SDE has only one positve solution in S.

Question: Can you relate all solutions to the solutions in S?

Back to self-similarity

Weak and pathwise uniqueness holds for

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t,$$

hence $(X_t) \stackrel{\mathcal{L}}{=} (cX_{tc^{-1}})$, so $Bes^2(\delta)$ is a ssMp with index 1.

<u>Remark:</u> Same argument shows that the interesting positive solution to the Itō-Watanabe SDE is a ssMp. Alternatively, play with Itō-formula and use

Lemma

Suppose (X_t) is a pssMp with index α , then (X_t^{α}) is a pssMp with index 1.

Proof: Set $Y = X^{\alpha}$, then

$$(cY_{tc^{-1}})_{t\geq 0} = ((c^{1/\alpha}X_{tc^{-1}})^{\alpha})_{t\geq 0} = ((c^{1/\alpha}X_{t(c^{1/\alpha})^{-\alpha}})^{\alpha})_{t\geq 0} = (Y_t)_{t\geq 0}$$

Back to self-similarity

Weak and pathwise uniqueness holds for

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t,$$

hence $(X_t) \stackrel{\mathcal{L}}{=} (cX_{tc^{-1}})$, so $Bes^2(\delta)$ is a ssMp with index 1.

<u>Remark:</u> Same argument shows that the interesting positive solution to the Itō-Watanabe SDE is a ssMp. Alternatively, play with Itō-formula and use

Lemma

Suppose (X_t) is a pssMp with index α , then (X_t^{α}) is a pssMp with index 1.

Proof: Set $Y = X^{\alpha}$, then

 $\left(c Y_{tc^{-1}} \right)_{t \ge 0} = \left((c^{1/\alpha} X_{tc^{-1}})^{\alpha} \right)_{t \ge 0} = \left((c^{1/\alpha} X_{t(c^{1/\alpha})^{-\alpha}})^{\alpha} \right)_{t \ge 0} = \left(Y_t \right)_{t \ge 0}$

Back to self-similarity

Weak and pathwise uniqueness holds for

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t,$$

hence $(X_t) \stackrel{\mathcal{L}}{=} (cX_{tc^{-1}})$, so $Bes^2(\delta)$ is a ssMp with index 1.

<u>Remark:</u> Same argument shows that the interesting positive solution to the Itō-Watanabe SDE is a ssMp. Alternatively, play with Itō-formula and use

Lemma

Suppose (X_t) is a pssMp with index α , then (X_t^{α}) is a pssMp with index 1.

Proof: Set $Y = X^{\alpha}$, then

$$\left(c Y_{tc^{-1}} \right)_{t \ge 0} = \left((c^{1/\alpha} X_{tc^{-1}})^{\alpha} \right)_{t \ge 0} = \left((c^{1/\alpha} X_{t(c^{1/\alpha})^{-\alpha}})^{\alpha} \right)_{t \ge 0} = \left(Y_t \right)_{t \ge 0}$$

To remember for later

Solutions to

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t,$$

form a nnssMp that is NOT absorbed at zero if only if $\delta > 0$. Recall, a pssMp is by definition absorbed at 0.

Definition

A Lévy process (X_t) is called (strictly) α -stable if it is also a self-similar Markov process.

• <u>Theorem</u>: $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]

• <u>Theorem</u>: Characteristic exponent $\Psi(\theta) := -\log \mathbb{E}(e^{i\theta X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = \mathsf{P}_0(X_t \ge 0)$.

$$\Pi(dx) = \left(\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho)\mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho})\mathbf{1}_{\{x<0\}}\right)\right) dx$$

Definition

A Lévy process (X_t) is called (strictly) α -stable if it is also a self-similar Markov process.

- Theorem: $\alpha \in (0,2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- <u>Theorem</u>: Characteristic exponent $\Psi(heta) := -\log \mathbb{E}(e^{i heta X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = \mathsf{P}_0(X_t \ge 0)$.

$$\Pi(dx) = \left(\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho)\mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho})\mathbf{1}_{\{x<0\}}\right)\right) dx$$

Definition

A Lévy process (X_t) is called (strictly) α -stable if it is also a self-similar Markov process.

- Theorem: $\alpha \in (0,2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- <u>Theorem</u>: Characteristic exponent $\Psi(\theta) := -\log \mathbb{E}(e^{i\theta X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (e^{\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + e^{-\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = \mathsf{P}_0(X_t \ge 0)$.

$$\Pi(dx) = \left(\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho)\mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho})\mathbf{1}_{\{x<0\}}\right)\right) dx$$

Definition

A Lévy process (X_t) is called (strictly) α -stable if it is also a self-similar Markov process.

- Theorem: $\alpha \in (0,2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- <u>Theorem</u>: Characteristic exponent $\Psi(\theta) := -\log \mathbb{E}(e^{i\theta X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathsf{e}^{\pi \mathsf{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathsf{e}^{-\pi \mathsf{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = \mathsf{P}_0(X_t \ge 0)$.

$$\Pi(dx) = \left(\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho)\mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho})\mathbf{1}_{\{x<0\}}\right)\right) dx$$

Content

- Examples and Brownian SDEs
- Lamperti's representation for pssMps and generators
- Lamperti SDE and Jump Diffusions

- Let (ξ_t) a Lévy process which is killed and sent to the cemetery state -∞ at an independent and exponentially distributed random time with rate in q ∈ [0,∞).
- Sometimes write $\xi^{(x)}$ if started in x, but always $\xi = \xi^{(0)}$.
- Define the integrated exponential Lévy process

$$I_t = \int_0^t \mathrm{e}^{lpha \xi_s} \mathrm{d}s, \qquad t \ge 0,$$

and its limit $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

• Define the inverse of the increasing process *I*:

$$\varphi(t) = \inf\{s > 0 : I_s > t\}, \qquad t \ge 0.$$

- Let (ξ_t) a Lévy process which is killed and sent to the cemetery state -∞ at an independent and exponentially distributed random time with rate in q ∈ [0,∞).
- Sometimes write $\xi^{(x)}$ if started in x, but always $\xi = \xi^{(0)}$.

• Define the integrated exponential Lévy process

$$I_t = \int_0^t e^{\alpha \xi_s} ds, \qquad t \ge 0,$$

and its limit $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

• Define the inverse of the increasing process *I*:

 $\varphi(t) = \inf\{s > 0 : I_s > t\}, \qquad t \ge 0.$

- Let (ξ_t) a Lévy process which is killed and sent to the cemetery state -∞ at an independent and exponentially distributed random time with rate in q ∈ [0,∞).
- Sometimes write $\xi^{(x)}$ if started in x, but always $\xi = \xi^{(0)}$.
- Define the integrated exponential Lévy process

$$I_t = \int_0^t \mathrm{e}^{lpha \xi_s} \mathrm{d} s, \qquad t \geq 0,$$

and its limit $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

• Define the inverse of the increasing process *I*:

$$\varphi(t) = \inf\{s > 0 : I_s > t\}, \qquad t \ge 0.$$

- Let (ξ_t) a Lévy process which is killed and sent to the cemetery state -∞ at an independent and exponentially distributed random time with rate in q ∈ [0,∞).
- Sometimes write $\xi^{(x)}$ if started in x, but always $\xi = \xi^{(0)}$.
- Define the integrated exponential Lévy process

$$I_t = \int_0^t \mathrm{e}^{lpha \xi_s} \mathrm{d} s, \qquad t \geq 0,$$

and its limit $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

• Define the inverse of the increasing process *I*:

$$\varphi(t) = \inf\{s > 0 : I_s > t\}, \qquad t \ge 0.$$

Lamperti transform for pssMp

Theorem (Part (i))

If $X^{(x)}$, x > 0, is a pssMp with index α , then it can be represented as follows. For x > 0,

$$X_t^{(x)} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\}, \qquad t \le T_0,$$

and ξ is a (possibly killed) Lévy process. Furthermore, $T_0 = x^{\alpha}I_{\infty}$, where $T_0 = \inf\{t > 0 : X_t^{(x)} \le 0\}$.

<u>Note:</u> Using $\xi^{(\log x)} = \xi + \log x$, one can also write

$$X_t^{(x)} = \exp\{\xi_{\varphi(t)}^{(\log x)}\}, \qquad t \le T_0.$$

<u>Note:</u> First version more common, but second version shows better what happens.

Leif Döring

Self-Similar Markov Processes and SDEs

Lamperti transform for pssMp

Theorem (Part (i))

If $X^{(x)}$, x > 0, is a pssMp with index α , then it can be represented as follows. For x > 0,

$$X_t^{(x)} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\}, \qquad t \le T_0,$$

and ξ is a (possibly killed) Lévy process. Furthermore, $T_0 = x^{\alpha} I_{\infty}$, where $T_0 = \inf\{t > 0 : X_t^{(x)} \le 0\}$.

<u>Note</u>: Using $\xi^{(\log x)} = \xi + \log x$, one can also write

$$X_t^{(x)} = \exp\{\xi_{\varphi(t)}^{(\log x)}\}, \qquad t \le T_0.$$

<u>Note:</u> First version more common, but second version shows better what happens.

Leif Döring

Lamperti transform for pssMp

Theorem (Part (ii))

Conversely, suppose ξ is a given (possibly killed) Lévy process. For each x > 0, define

$$X_t^{(x)} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\}\mathbf{1}_{(t < x^{\alpha}I_{\infty})}, \qquad t \ge 0.$$

Then $X^{(x)}$ defines a pssMp, up to its absorption time at the origin.

Lévy reminder

- For a Lévy process ξ either
- (0) ξ is killed
- (a) $\lim_{t\uparrow\infty}\xi_t = +\infty$ a.s.
- (b) $\lim_{t\uparrow\infty}\xi_t = -\infty$ a.s.
- (c) $\limsup_{t\uparrow\infty} \xi_t = \infty$, $\liminf_{t\uparrow\infty} \xi_t = -\infty$ a.s.

Definition

We say

- (0) ξ is killed
- (a) ξ drifts to $+\infty$
- (b) ξ drifts to $-\infty$
- (c) ξ oscillates

Example: $\xi_t = at + B_t$, only depends on a

Consequenes for pssMp

Consequence for pssMps

For all x > 0 we have

(1)
$$T_0 = \infty$$
 a.s. iff ξ drifts to $+\infty$ or oscillates,

(2)
$$T_0 < \infty$$
 and $X_{T_0-}^{(x)} = 0$ a.s. iff ξ drifts to $-\infty$,

(3)
$$T_0 < \infty$$
 and $X_{T_0-}^{(x)} > 0$ a.s. iff ξ is killed.

 \rightarrow blackboard drawings

Summary

 $\begin{array}{lll} (X, \mathsf{P}_x)_{x>0} \ \mathsf{pssMp} & \leftrightarrow & (\xi, \mathbb{P}_y)_{y \in \mathbb{R}} \ \mathsf{killed} \ \mathsf{Lévy} \\ X_t = \exp(\xi_{\mathcal{S}(t)}), & \xi_s = \log(X_{\mathcal{T}(s)}), \\ \mathcal{S} \ \mathsf{a} \ \mathsf{random} \ \mathsf{time-change} & \mathcal{T} \ \mathsf{a} \ \mathsf{random} \ \mathsf{time-change} \end{array}$

 $\left.\begin{array}{c}X \text{ never hits zero}\\X \text{ hits zero continuously}\\X \text{ hits zero by a jump}\\X \text{ has continuous paths}\end{array}\right\} \leftrightarrow \left\{\begin{array}{c}\xi \to \infty \text{ or } \xi \text{ oscillates}\\\xi \to -\infty\\\xi \text{ is killed}\\\xi \text{ has continuous paths}\end{array}\right\}$

Example

We know $Bes^2(\delta)$

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t$$

is self-similar so it is a pssMp up to T_0 . One can prove in many ways that $Bes^2(\delta)$ hits zero (continuously) if and only if $\delta < 2$.

<u>Questions</u>: Can you guess the corresponding Lévy process and why $\delta < 2$? (there are not many choices)

 \rightarrow Let's find ξ with the help of generators.

Generator Theory

<u>Definition</u>: The generator of a Markov process on $\mathcal X$ is the linear operator

$$\mathcal{A}f(x) = \lim_{t \to 0} \frac{E^{\times}[f(X_t)] - f(x)}{t}, \quad x \in \mathcal{X},$$

defined on the domain $\mathcal{D}(\mathcal{A}) = \{f \in C_b : \mathcal{A}f(x) \text{ exists in } C_b\}.$

<u>Note:</u> It is normal to know the action \mathcal{A} but not the full domain $\mathcal{D}(\mathcal{A})$. To know a large (dense) subset of $\mathcal{D}(\mathcal{A})$ is typically enough to work with the generator (see Ethier/Kurtz book).

<u>Note:</u> Often one uses generator computations (without caring for the domain) to guess the results and then develop different proof.

Dynkin Formula and it's inverse to compute the generator (1) If $(A, \mathcal{D}(A))$ is the generator of (X_t) and $f \in \mathcal{D}(A)$, then

$$M_t = f(X_t) - f(X_0) - \int_0^t \mathcal{A}f(X_s) \, ds, \quad t \ge 0,$$

is a martingale.

(2) If $f \in C_b$ and there is $g \in C_b$ with

$$M_t = f(X_t) - f(X_0) - \int_0^t g(X_s) \, ds, \quad t \ge 0,$$

is a martingale, then $f\in\mathcal{D}(\mathcal{A})$ and $g=\mathcal{A}f$.

Finding a process so that the righhand sides are martingales is also called "solving the martingale problem" for $(\mathcal{A}, \mathcal{D}(\mathcal{A}))$. Such a process has generator $(\mathcal{A}, \mathcal{D}(\mathcal{A}))$.

Dynkin Formula and it's inverse to compute the generator (1) If $(A, \mathcal{D}(A))$ is the generator of (X_t) and $f \in \mathcal{D}(A)$, then

$$M_t = f(X_t) - f(X_0) - \int_0^t \mathcal{A}f(X_s) \, ds, \quad t \ge 0,$$

is a martingale.

(2) If $f \in C_b$ and there is $g \in C_b$ with $M_t = f(X_t) - f(X_0) - \int_0^t g(X_s) \, ds, \quad t \ge 0,$

is a martingale, then $f \in \mathcal{D}(\mathcal{A})$ and $g = \mathcal{A}f$.

Finding a process so that the righhand sides are martingales is also called "solving the martingale problem" for $(\mathcal{A}, \mathcal{D}(\mathcal{A}))$. Such a process has generator $(\mathcal{A}, \mathcal{D}(\mathcal{A}))$. Some examples (without exact domain)

• For solutions of $dX_t = a(X_t)dt + \sigma(X_t)dB_t$ the generator acts as

$$\mathcal{A}f(x) = \mathsf{a}(x)f'(x) + \frac{1}{2}\sigma^2(x)f''(x), \quad x \in \mathbb{R},$$

because (Itō formula)

$$\begin{split} f(X_t) - f(X_0) - \int_0^t f'(X_s) a(X_s) ds &- \frac{1}{2} \int_0^t f''(X_s) \sigma^2(X_s) ds \\ &= \int_0^t f'(X_s) \sigma(X_s) dB_s, \quad t \ge 0. \end{split}$$

and Dynkin formula (when is an Itō-integral a martingale?). • For a Lévy process with triplet (a, σ^2, Π) the generator acts as

$$\begin{aligned} \mathcal{A}f(x) &= af'(x) + \frac{1}{2}\sigma^2 f''(x) \\ &+ \int_{\mathbb{R}} \left(f(x+u) - f(x) - f'(x)u\mathbf{1}_{|u| \leq 1} \right) \Pi(du), \quad x \in \mathbb{R}. \end{aligned}$$

Some examples (without exact domain)

• For solutions of $dX_t = a(X_t)dt + \sigma(X_t)dB_t$ the generator acts as

$$\mathcal{A}f(x) = \mathsf{a}(x)f'(x) + \frac{1}{2}\sigma^2(x)f''(x), \quad x \in \mathbb{R},$$

because (Itō formula)

$$\begin{split} f(X_t) - f(X_0) - \int_0^t f'(X_s) a(X_s) ds &- \frac{1}{2} \int_0^t f''(X_s) \sigma^2(X_s) ds \\ &= \int_0^t f'(X_s) \sigma(X_s) dB_s, \quad t \ge 0. \end{split}$$

and Dynkin formula (when is an Itō-integral a martingale?). • For a Lévy process with triplet (a, σ^2, Π) the generator acts as

$$\begin{aligned} \mathcal{A}f(x) &= \mathsf{a}f'(x) + \frac{1}{2}\sigma^2 f''(x) \\ &+ \int_{\mathbb{R}} \big(f(x+u) - f(x) - f'(x) u \mathbb{1}_{|u| \le 1} \big) \Pi(du), \quad x \in \mathbb{R}. \end{aligned}$$

Some examples (with domain)

• $(\frac{1}{2}\Delta, C_0(\mathbb{R}))$ generates Brownian motion B on \mathbb{R} •

$$\left(\frac{1}{2}\Delta, C_0(\mathbb{R}_+) \cap \{f: f(0)=0\}\right)$$

generates Brownian motion absorbed at zero B^{\dagger} .

The usefullness of generators

Many transformations of Markov processes can be understood with "formal" computations of generators. This allows to guess results, rigorous proofs often with other techniques.

Example: Conditioning a process to avoid a set *B* often leads to an *h*-transform with a positive harmonic function which vanishes at *B*. For *h*-transforms the formula $\mathcal{A}^h f(x) = \frac{1}{h(x)} \mathcal{A} fh(x)$ holds.

Some might know that (B_t^{\uparrow}) , BM conditioned to be positive is an *h*-transform of (B_t^{\dagger}) with h(x) = x. Pluging-in gives

$$\mathcal{A}^{\uparrow}f(x) = \frac{1}{h(x)} \frac{1}{2} \frac{d^2}{dx^2} fh(x)$$

= $\frac{1}{h(x)} \frac{1}{2} (f''(x)h(x) + f(x)h''(x) + 2f'(x)h'(x))$
= $\frac{1}{2} f''(x) + \frac{1}{x} f'(x)$

 $\rightarrow (B_t^{\uparrow})$ is Bes(3)-process, self-similar with index 1. Stable case harder!

The usefullness of generators

Many transformations of Markov processes can be understood with "formal" computations of generators. This allows to guess results, rigorous proofs often with other techniques.

Example: Conditioning a process to avoid a set *B* often leads to an *h*-transform with a positive harmonic function which vanishes at *B*. For *h*-transforms the formula $\mathcal{A}^h f(x) = \frac{1}{h(x)} \mathcal{A} fh(x)$ holds.

Some might know that (B_t^{\uparrow}) , BM conditioned to be positive is an *h*-transform of (B_t^{\uparrow}) with h(x) = x. Pluging-in gives

$$\mathcal{A}^{\uparrow}f(x) = \frac{1}{h(x)} \frac{1}{2} \frac{d^2}{dx^2} fh(x)$$

= $\frac{1}{h(x)} \frac{1}{2} (f''(x)h(x) + f(x)h''(x) + 2f'(x)h'(x))$
= $\frac{1}{2} f''(x) + \frac{1}{x} f'(x)$

 $\rightarrow (B_t^{\uparrow})$ is Bes(3)-process, self-similar with index 1. Stable case harder!

Leif Döring

The usefullness of generators

Many transformations of Markov processes can be understood with "formal" computations of generators. This allows to guess results, rigorous proofs often with other techniques.

Example: Conditioning a process to avoid a set *B* often leads to an *h*-transform with a positive harmonic function which vanishes at *B*. For *h*-transforms the formula $\mathcal{A}^h f(x) = \frac{1}{h(x)} \mathcal{A} fh(x)$ holds.

Some might know that (B_t^{\uparrow}) , BM conditioned to be positive is an *h*-transform of (B_t^{\dagger}) with h(x) = x. Pluging-in gives

$$\begin{aligned} \mathcal{A}^{\uparrow}f(x) &= \frac{1}{h(x)} \frac{1}{2} \frac{d^2}{dx^2} fh(x) \\ &= \frac{1}{h(x)} \frac{1}{2} (f''(x)h(x) + f(x)h''(x) + 2f'(x)h'(x)) \\ &= \frac{1}{2} f''(x) + \frac{1}{x} f'(x) \end{aligned}$$

 $ightarrow (B_t^{\uparrow})$ is Bes(3)-process, self-similar with index 1. Stable case harder!

Generators and time-change

 $\underbrace{\mathsf{Time-Change:}}_{\mathsf{satisfy}} \mathsf{Two Markov processes } X \text{ and } \tilde{X} \text{ with generators } \mathcal{A} \text{ and } \tilde{\mathcal{A}}$

$$\mathcal{A}f(x) = \beta(x)\tilde{\mathcal{A}}f(x), \quad x \in \mathcal{X},$$

for a measurable function $\beta:\mathcal{X}\rightarrow\mathbb{R}$ if and only if

$$X_t = ilde{X}_{(\int_0^t eta^{-1}(ilde{X}_s) \, ds)^{-1}}, \quad t \geq 0,$$

and

$$\inf\left\{t:\int_0^t\beta^{-1}(\tilde{X}_s)\,ds=\infty\right\}=\inf\{t:\beta(\tilde{X}_t)=0\}.$$

Theorem due to Volkonskii. (Proof: Martingale problem, change variables). Note: Multiplication in generator changes only speed not directions.

Generators and time-change

 $\underbrace{\mathsf{Time-Change:}}_{\mathsf{satisfy}} \mathsf{Two Markov processes } X \text{ and } \tilde{X} \text{ with generators } \mathcal{A} \text{ and } \tilde{\mathcal{A}}$

$$\mathcal{A}f(x) = \beta(x)\tilde{\mathcal{A}}f(x), \quad x \in \mathcal{X},$$

for a measurable function $\beta:\mathcal{X}\rightarrow\mathbb{R}$ if and only if

$$X_t = ilde{X}_{(\int_0^t eta^{-1}(ilde{X}_s) \, ds)^{-1}}, \quad t \ge 0,$$

and

$$\inf\left\{t:\int_0^t\beta^{-1}(\tilde{X}_s)\,ds=\infty\right\}=\inf\{t:\beta(\tilde{X}_t)=0\}.$$

Theorem due to Volkonskii. (Proof: Martingale problem, change variables).

Note: Multiplication in generator changes only speed not directions.

Generators and time-change

 $\underbrace{\mathsf{Time-Change:}}_{\mathsf{satisfy}} \mathsf{Two Markov processes } X \text{ and } \tilde{X} \text{ with generators } \mathcal{A} \text{ and } \tilde{\mathcal{A}}$

$$\mathcal{A}f(x) = \beta(x)\tilde{\mathcal{A}}f(x), \quad x \in \mathcal{X},$$

for a measurable function $\beta:\mathcal{X}\rightarrow\mathbb{R}$ if and only if

$$X_t = ilde{X}_{(\int_0^t eta^{-1}(ilde{X}_s) \, ds)^{-1}}, \quad t \ge 0,$$

and

$$\inf\left\{t:\int_0^t\beta^{-1}(\tilde{X}_s)\,ds=\infty\right\}=\inf\{t:\beta(\tilde{X}_t)=0\}.$$

Theorem due to Volkonskii. (Proof: Martingale problem, change variables).

Note: Multiplication in generator changes only speed not directions.

A fun example

Fun example: SABR model (stochastic α, β, ρ model with $\beta < 1$)

$$\begin{cases} dX_t = \sigma_t X_t^\beta dB_t \\ d\sigma_t = \alpha \, \sigma_t dW_t \end{cases}$$

Suppose B and W are independent even though the ρ in the name stands for their correlation.

Question: Any idea for the limit $\lim_{t\to\infty} X_t$?

Hint: Generator is

$$\mathcal{A}f(x,y) = y^2\left(x^{2\beta}\frac{1}{2}f_{xx}(x,y) + \frac{\alpha^2}{2}f_{yy}(x,y)\right).$$

Lamperti's representation now seen through generators

Theorem (Lamperti), continuous case

The action of the generator for a continuous pssMp is

$$\mathcal{A}f(x) = \frac{1}{x^{\alpha}} \left[\left(\mathbf{a} + \frac{\sigma^2}{2} \right) x f'(x) + \sigma x^2 f''(x) \right]$$

and the corresponding Lévy process is $\xi_t = at + \sigma B_t$.

Why? Righthand side is

$$rac{1}{x^{lpha}}\mathcal{A}_{e^{\mathsf{BM}}}$$
 with drift $f(x),$

where $\mathcal{A}_{e^{\rm BM \ with \ drift}}$ is the generator of $e^{\rm BM \ with \ drift}$ and you know which SDE it solves.

All continuous pssMps

Rewritten, all generators of continuous pssMps have action

$$\mathcal{A}f(x) = \left(a + \frac{\sigma^2}{2}\right) x^{1-\alpha} f'(x) + \frac{\sigma^2}{2} x^{2-\alpha} f''(x)$$
$$= \log \mathbb{E}[e^{\xi_1}] x^{1-\alpha} f'(x) + \frac{\sigma^2}{2} x^{2-\alpha} f''(x).$$

Setting $\delta = a + \frac{\sigma^2}{2}$, all pssMps with continuous paths and index α are solutions (up to T_0) to

$$dX_t = \delta X_t^{1-\alpha} dt + \sigma X_t^{1-\alpha/2} dB_t, \qquad X_0 > 0, \tag{2}$$

for some $\delta \in \mathbb{R}, \sigma > 0$.

Corollary: Solutions to the SDE (2) hit zero in finite time a.s. if $\delta < \frac{\sigma^2}{2}$. Otherwise, almost surely zero is not hit.

All continuous pssMps

Rewritten, all generators of continuous pssMps have action

$$\mathcal{A}f(x) = \left(a + \frac{\sigma^2}{2}\right) x^{1-\alpha} f'(x) + \frac{\sigma^2}{2} x^{2-\alpha} f''(x)$$
$$= \log \mathbb{E}[e^{\xi_1}] x^{1-\alpha} f'(x) + \frac{\sigma^2}{2} x^{2-\alpha} f''(x).$$

Setting $\delta = a + \frac{\sigma^2}{2}$, all pssMps with continuous paths and index α are solutions (up to T_0) to

$$dX_t = \delta X_t^{1-\alpha} dt + \sigma X_t^{1-\alpha/2} dB_t, \qquad X_0 > 0, \tag{2}$$

for some $\delta \in \mathbb{R}, \sigma > 0$.

Corollary: Solutions to the SDE (2) hit zero in finite time a.s. if $\delta < \frac{\sigma^2}{2}$. Otherwise, almost surely zero is not hit.

$Bes^2(\delta)$ again

With $\alpha = 1$ and $\sigma = 2$ we get back to $Bes^2(\delta)$:

$$dX_t = \delta dt + 2\sqrt{X_t} dB_t$$

with corresponding Lévy process

$$\xi_t = (\delta - 2)t + 2B_t.$$

Hence, zero is hit in finite time iff $\delta < 2$ because this is when ξ drifts to $-\infty$.

Lamperti's representation now seen through generators

Theorem (Lamperti), for
$$E[e^{\xi_1}] < \infty$$

The action of the generator for a $\ensuremath{\mathsf{pss}}\xspace$ is

$$\mathcal{A}f(x) = \frac{1}{x^{\alpha}} \left[\log E[e^{\xi_1}] \times f'(x) + \frac{\sigma^2}{2} \times f''(x) + \int_{-\infty}^{\infty} \left[f(e^u x) - f(x) - f'(x) \times (e^u - 1) \mathbf{1}_{|u| \le 1} \right] \Pi(du) \right]$$

and the corresponding Lévy process has triplet (a, σ^2, Π) .

Why? Righthand side is

$$\mathcal{A}f(x)=\frac{1}{x^{\alpha}}\mathcal{A}_{e^{\xi}}f(x),$$

where $A_{e^{\xi}}$ is the generator of $e^{\xi} \rightarrow \mathsf{blackboard}$

There are three transformations for Markov processes and we know what happens:

- change space (Itō formula)
- change time (Volkonskii)
- reverse time (*h*-transform)

Keep this in mind if you want to analyze a process !!!

General Remarks 2

For pssMps (and other processes such as CSBPs) there are three equivalent ways of thinking:

- time-change (i.e. Lamperti representation)
- generator
- SDE \rightarrow last chapter

All have advantages and disadvantages. Advantages are

- time-change can be good to analyze asymptotics
- generator good for quick calculations
- SDE good because you have Ito formula, local times for instance, etc.

Time-change has crucial disadvantage: No way to analyse process after hitting zero, entire path of the Lévy process is already used.

Content

- Examples and Brownian SDEs
- Lamperti's representation for pssMps and generators
- Lamperti SDE and Jump Diffusions

Extending pssMps to initial value 0 - possible or not?

- Recurrent case (continuous exit)
 - ightarrow blackboard
- Transient case
 - ightarrow blackboard

Next: Simple proof for special case of spec negative pssMps, assume $\alpha = 1$.

Lévy SDEs

A Lévy SDE

$$dX_t = a(X_t)dt + \sigma(X_{t-})dL_t$$

driven by a Lévy process is an abbreviation for

$$X_t = X_0 + \int_0^t a(X_s) ds + \int_0^t \sigma(X_{s-}) dL_s, \quad t \ge 0.$$

Definitions and results mostly analogous to Brownian theory, similar $It\bar{o}$ construction of stochastic integral.

Example: If (L_t) is spec pos α -stable, then pathwise uniqueness holds if a is Lipschitz and σ is $(1 - \frac{1}{\alpha})$ -Hölder (Li/Mytnik). If (L_t) is symmetric, then $1 - \frac{1}{\alpha}$ changes to $\frac{1}{\alpha}$.

Jump diffusions

We want more general equations in light of the Lévy-Itō representation of Lévy processes:

$$\begin{aligned} X_t &= X_0 + \int_0^t a(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s \\ &+ \int_0^t \int_U c(X_{s-}, u) (\mathcal{N} - \mathcal{N}') (ds, du) + \int_0^t \int_V d(X_{s-}, u) \mathcal{M}(ds, du) \end{aligned}$$

where

- \mathcal{N} PPP on $[0,\infty) \times U$ with intensity $\mathcal{N}'(ds, du) = ds\nu(du)$ and ν is σ -finite
- \mathcal{M} PPP on $[0,\infty) \times V$ with intensity $\mathcal{M}'(ds,du) = ds\mu(du)$ and μ is finite

Jump Diffusions

Integrals defined as in the Lévy-Itō representation of Lévy processes:

$$\begin{split} &\int_0^t \int_U c(X_{s-}, u)(\mathcal{N} - \mathcal{N}')(ds, du) \\ &\stackrel{L^2}{:=} \lim_{\varepsilon \to 0} \int_0^t \int_{U_\varepsilon} c(X_{s-}, u)(\mathcal{N} - \mathcal{N}')(ds, du) \\ &:= \lim_{\varepsilon \to 0} \left(\int_0^t \int_{U_\varepsilon} c(X_{s-}, u)\mathcal{N}(ds, du) - \int_0^t \int_{U_\varepsilon} c(X_{s-}, u)\mathcal{N}'(ds, du) \right) \\ &= \lim_{\varepsilon \to 0} \left(\sum_{x \in \mathcal{N}([0,t] \times U_\varepsilon)} c(X_{s-}, x) - \int_0^t \int_{U_\varepsilon} c(X_{s-}, u) \nu(du) \, ds \right). \end{split}$$

<u>Warning</u>: In general both limits can be infinite but the compensated integral converges under suitable conditions.

<u>Note:</u> If limiting compensator integral is finite, then jump integral is finite and integral is difference of jump integral and compensator integral.

Jump diffusions

Example 1:

Lévy processes in Lévy-Itō form are jump diffusions:

Example 2: Lévy SDE written as special jump diffusion:

Jumps of Lévy SDE at t take the form $d(X_{t-})\Delta L_t$ just as a Brownian integral gives $\sigma(X_t)\Delta B_t$.

General jump diffusions have jumps $d(X_{t-}, \Delta L_t)$ which is more flexible for modelling.

Itō formula for jump diffusions

With X as above and $f \in C^2$, we get

$$\begin{split} f(X_t) &- f(X_0) \\ = \int_0^t f'(X_s) a(X_s) \, ds + \int_0^t f'(X_s) \sigma(X_s) \, dB_s + \frac{1}{2} \int_0^t f''(X_s) \sigma^2(X_s) \, ds \\ &+ \int_0^t \int_U \left[f(X_{s-} + c(X_{s-}, u)) - f(X_{s-}) \right] (\mathcal{N} - \mathcal{N}') (ds, du) \\ &+ \int_0^t \int_V \left[f(X_{s-} + d(X_{s-}, u)) - f(X_{s-}) \right] \mathcal{M} (ds, du) \\ &+ \int_0^t \int_U \left[f(X_s + c(X_s, u)) - f(X_s) - f'(X_s) c(X_s, u)) \right] \mathcal{N}' (ds, du). \end{split}$$

Special case: Lévy for $a = \sigma = const$ and d(x, u) = c(x, u) = u and $\overline{N = M}$.

If *f* is bounded, then

$$\int_0^t \int_V \left| f(X_{s-} + c(X_{s-}, u)) - f(X_{s-}) \right| \mu(du) \, ds$$

$$\leq 2||f||_{\infty} t \int_V \mu(du) < \infty$$

so adding and substracting compensation for $\ensuremath{\mathcal{M}}$ gives

$$M_t = f(X_t) - f(X_0) - \int_0^t \mathcal{A}f(X_s) \, ds$$

is a martingale, where

$$\begin{aligned} \mathcal{A}f(x) &= a(x)f'(x) + \frac{1}{2}\sigma^2(x)f''(x) \\ &+ \int_U \left[f(x + c(x, u)) - f(x) - f'(x)c(x, u) \right] \nu(du) \\ &+ \int_V \left[f(x + d(x, u)) - f(x) \right] \mu(du). \end{aligned}$$

Consequence: Know generator action for jump diffusions just as for SDEs.

If f is bounded, then

$$\int_0^t \int_V \left| f(X_{s-} + c(X_{s-}, u)) - f(X_{s-}) \right| \mu(du) \, ds$$

$$\leq 2||f||_{\infty} t \int_V \mu(du) < \infty$$

so adding and substracting compensation for $\ensuremath{\mathcal{M}}$ gives

$$M_t = f(X_t) - f(X_0) - \int_0^t \mathcal{A}f(X_s) \, ds$$

is a martingale, where

$$\begin{aligned} \mathcal{A}f(x) &= a(x)f'(x) + \frac{1}{2}\sigma^2(x)f''(x) \\ &+ \int_U \left[f(x+c(x,u)) - f(x) - f'(x)c(x,u) \right] \nu(du) \\ &+ \int_V \left[f(x+d(x,u)) - f(x) \right] \mu(du). \end{aligned}$$

Consequence: Know generator action for jump diffusions just as for SDEs.

Jump diffusions

<u>Remark:</u> All general weak SDE theorems hold more or less equally for jump diffusions. Only pathwise uniqueness results need adjustment.

<u>Remark</u>: There are some pathwise uniqueness results, essentially same proof as for BM (Itō formula with $\phi_n(\cdot) \rightarrow |\cdot|$). More difficult because of unfriendly jump Itō formula.

Suppose solution \tilde{X} of a jump diffusion has generator $\tilde{\mathcal{A}}$. How to produce time-change X with generator $\mathcal{A} = \beta \tilde{\mathcal{A}}$?

We know how to change drift and diffusion, but what to do with the jumps? \rightarrow add extra component in PPP!

$$\begin{aligned} X_t &= X_0 + \int_0^t \beta(X_s) a(X_s) \, ds + \int_0^t \sqrt{\beta(X_s)} \, \sigma(X_s) \, dB_s \\ &+ \int_0^t \int_0^{\beta(X_{s-1})} \int_U c(X_{s-1}, u) (\mathcal{N} - \mathcal{N}') (ds, dr, du) \\ &+ \int_0^t \int_0^{\beta(X_{s-1})} \int_V d(X_{s-1}, u) \mathcal{M}(ds, dr, du), \end{aligned}$$

where

N PPP on [0,∞) × [0,∞) × *U* with *N*'(*ds*, *dr*, *du*) = *ds dr* ν(*du*)
 M PPP on [0,∞) × [0,∞) × *V* with *M*'(*ds*, *dr*, *du*) = *ds dr* μ(*du*)

<u>Exercise:</u> Calculate generator for X with Itō formula to confirm $\mathcal{A}=eta ilde{\mathcal{A}}.$

Leif Döring

Self-Similar Markov Processes and SDEs

11. Juli 2019 51 / 60

Suppose solution \tilde{X} of a jump diffusion has generator $\tilde{\mathcal{A}}$. How to produce time-change X with generator $\mathcal{A} = \beta \tilde{\mathcal{A}}$?

We know how to change drift and diffusion, but what to do with the jumps? \rightarrow add extra component in PPP!

$$\begin{aligned} X_t &= X_0 + \int_0^t \beta(X_s) a(X_s) \, ds + \int_0^t \sqrt{\beta(X_s)} \, \sigma(X_s) \, dB_s \\ &+ \int_0^t \int_0^{\beta(X_{s-})} \int_U c(X_{s-}, u) (\mathcal{N} - \mathcal{N}') (ds, dr, du) \\ &+ \int_0^t \int_0^{\beta(X_{s-})} \int_V d(X_{s-}, u) \mathcal{M}(ds, dr, du), \end{aligned}$$

where

N PPP on [0,∞) × [0,∞) × *U* with *N*'(*ds*, *dr*, *du*) = *ds dr* ν(*du*)
 M PPP on [0,∞) × [0,∞) × *V* with *M*'(*ds*, *dr*, *du*) = *ds dr* μ(*du*)

<u>Exercise:</u> Calculate generator for X with Itō formula to confirm $\mathcal{A} = \beta \tilde{\mathcal{A}}$.

Leif Döring

Self-Similar Markov Processes and SDEs

11. Juli 2019 51 / 60

Suppose solution \tilde{X} of a jump diffusion has generator $\tilde{\mathcal{A}}$. How to produce time-change X with generator $\mathcal{A} = \beta \tilde{\mathcal{A}}$?

We know how to change drift and diffusion, but what to do with the jumps? \rightarrow add extra component in PPP!

$$\begin{aligned} X_t &= X_0 + \int_0^t \beta(X_s) a(X_s) \, ds + \int_0^t \sqrt{\beta(X_s)} \, \sigma(X_s) \, dB_s \\ &+ \int_0^t \int_0^{\beta(X_{s-1})} \int_U c(X_{s-1}, u) (\mathcal{N} - \mathcal{N}') (ds, dr, du) \\ &+ \int_0^t \int_0^{\beta(X_{s-1})} \int_V d(X_{s-1}, u) \mathcal{M}(ds, dr, du), \end{aligned}$$

where

• \mathcal{N} PPP on $[0,\infty) \times [0,\infty) \times U$ with $\mathcal{N}'(ds, dr, du) = ds dr \nu(du)$ • \mathcal{M} PPP on $[0,\infty) \times [0,\infty) \times V$ with $\mathcal{M}'(ds, dr, du) = ds dr \mu(du)$

Exercise: Calculate generator for X with Itō formula to confirm $\mathcal{A}=eta ilde{\mathcal{A}}.$

Leif Döring

Suppose solution \tilde{X} of a jump diffusion has generator $\tilde{\mathcal{A}}$. How to produce time-change X with generator $\mathcal{A} = \beta \tilde{\mathcal{A}}$?

We know how to change drift and diffusion, but what to do with the jumps? \rightarrow add extra component in PPP!

$$\begin{aligned} X_t &= X_0 + \int_0^t \beta(X_s) a(X_s) \, ds + \int_0^t \sqrt{\beta(X_s)} \, \sigma(X_s) \, dB_s \\ &+ \int_0^t \int_0^{\beta(X_{s-1})} \int_U c(X_{s-1}, u) (\mathcal{N} - \mathcal{N}') (ds, dr, du) \\ &+ \int_0^t \int_0^{\beta(X_{s-1})} \int_V d(X_{s-1}, u) \mathcal{M}(ds, dr, du), \end{aligned}$$

where

N PPP on [0,∞) × [0,∞) × *U* with *N*'(*ds*, *dr*, *du*) = *ds dr* ν(*du*)
 M PPP on [0,∞) × [0,∞) × *V* with *M*'(*ds*, *dr*, *du*) = *ds dr* μ(*du*)

<u>Exercise</u>: Calculate generator for X with Itō formula to confirm $\mathcal{A} = \beta \tilde{\mathcal{A}}$.

Leif Döring

Please find an SDE representation for pssMps with $\alpha=1$!

Theorem (Barczy, D.)

Every pssMp with $\alpha=1$ can be written as solution to

$$\begin{split} X_t &= X_0 + \left(\mathbf{a} + \frac{\sigma^2}{2} + \int_{\{|u| \le 1\}} (e^u - 1 - u) \,\Pi(\mathsf{d} u) \right) t + \sigma \int_0^t \sqrt{X_s} \mathsf{d} B_s \\ &+ \int_0^t \int_0^{1/X_{s-}} \int_{\{|u| \le 1\}} X_{s-}[e^u - 1] (\mathcal{N} - \mathcal{N}')(\mathsf{d} s, dr, \mathsf{d} u) \\ &+ \int_0^t \int_0^{1/X_{s-}} \int_{\{|u| > 1\}} X_{s-}[e^u - 1] \mathcal{N}(\mathsf{d} s, dr, \mathsf{d} u), \quad t \le T_0, \end{split}$$

where (a, σ², Π) is a Lévy triplet and
B is a BM
N is a PPP on ℝ⁺ × ℝ⁺ × ℝ with intensity ds ⊗ dr ⊗ Π(du)

The equation is not very nice at first glance.

But:

- If we assume $E[e^{\xi_1}] < \infty$ we learn something.
- If we assume ξ is spec neg, we can do everything we wish.

Lamperti SDE If $E[e^{\xi_1}] < \infty$, then

$$\int_{0}^{t} \int_{0}^{1/X_{s-}} \int_{\{|u|>1\}} X_{s-}[e^{u}-1]\mathcal{N}'(\mathrm{d} s,\mathrm{d} r,\mathrm{d} u)$$

= $\int_{0}^{t} \int_{0}^{1/X_{s-}} \int_{\{|u|>1\}} X_{s-}[e^{u}-1] \,\mathrm{d} s \,\mathrm{d} r \,\Pi(\mathrm{d} u)$
= $t \,\int_{\{|u|>1\}} [e^{u}-1]\Pi(\mathrm{d} u) < \infty,$

hence,

$$\begin{split} &\int_0^t \int_0^{1/X_{s-}} \int_{\{|u|>1\}} X_{s-}[e^u-1]\mathcal{N}(\mathrm{d} s,\mathrm{d} r,\mathrm{d} u) \\ &= \int_0^t \int_0^{1/X_{s-}} \int_{\{|u|>1\}} X_{s-}[e^u-1](\mathcal{N}-\mathcal{N}')(\mathrm{d} s,\mathrm{d} r,\mathrm{d} u) \\ &+ t \int_{\{|u|>1\}} [e^u-1]\Pi(\mathrm{d} u). \end{split}$$

Leif Döring

Using Lévy-Khintchin

$$\log E[e^{\xi_1}] = a + \frac{\sigma^2}{2} + \int_{\mathbb{R}} (e^u - 1 - u \mathbb{1}_{\{|u| \le 1\}}) \,\Pi(du)$$

we can simplify the SDE to

$$\begin{aligned} X_t &= X_0 + \log E[e^{\xi_1}]t + \sigma \int_0^t \sqrt{X_s} dB_s \\ &+ \int_0^t \int_0^{1/X_{s-}} \int_{\mathbb{R}} X_{s-}[e^u - 1](\mathcal{N} - \mathcal{N}')(\mathrm{d}s, \mathrm{d}r, \mathrm{d}u). \end{aligned}$$

<u>Note:</u> Call both SDEs Lamperti SDE because they are equivalent to Lamperti's representation.

Lamperti SDE in the spectrally negative case

Theorem (Barczy, D.)

- Pathwise uniqueness holds for the Lamperti SDE.
- Precisely for log *E*[*e*^{ξ1}] > 0 there are strong solutions for all *X*₀ ≥ 0 to the Lamperti SDE and pathwise uniqueness holds.
- Solutions are self-similar Markov processes with non-negative paths.

<u>Proof:</u> Ugly Yamada/Watanabe type arguments.

Theorem

The self-similar recurrent extensions of Fitzsimmons, Rivero and also the limit laws P^0 of Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero, Savov, ... are solutions to the SDE.

<u>Proof</u>: As above for $Bes^2(\delta)$: Show that (X_t) and $(cX_{tc^{-1}})$ solve same equation, then use uniqueness.

Exercise: Please proof uniqueness also for positive jumps!

Theorem

The self-similar recurrent extensions of Fitzsimmons, Rivero and also the limit laws P^0 of Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero, Savov, ... are solutions to the SDE.

<u>Proof</u>: As above for $Bes^2(\delta)$: Show that (X_t) and $(cX_{tc^{-1}})$ solve same equation, then use uniqueness.

Exercise: Please proof uniqueness also for positive jumps!

Theorem

The self-similar recurrent extensions of Fitzsimmons, Rivero and also the limit laws P^0 of Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero, Savov, ... are solutions to the SDE.

<u>Proof</u>: As above for $Bes^2(\delta)$: Show that (X_t) and $(cX_{tc^{-1}})$ solve same equation, then use uniqueness.

Exercise: Please proof uniqueness also for positive jumps!

Why is Lamperti SDE special?

- Lamperti SDE for $t \leq T_0 \iff$ Lamperti's representation.
- Lamperti's respresentation does not work immediately for $t > T_0$.
- BUT: Lamperti SDE works immediately for $t > T_0$ iff the necessary and sufficient condition is fulfilled.

Why is Lamperti SDE special?

- Lamperti SDE for $t \leq T_0 \iff$ Lamperti's representation.
- Lamperti's respresentation does not work immediately for $t > T_0$.
- BUT: Lamperti SDE works immediately for $t > T_0$ iff the necessary and sufficient condition is fulfilled.

Summary

We discussed definitions, examples and connections for

- time-change
- generators
- SDEs

In some sense those are equivalent, but approaches have different advantages.

For pssMps we discussed

- time-change representation
- generator representation
- SDE representation

For pssMps the SDE representation has a magic feature: Can be extended after hitting zero.

Summary

We discussed definitions, examples and connections for

- time-change
- generators
- SDEs

In some sense those are equivalent, but approaches have different advantages.

For pssMps we discussed

- time-change representation
- generator representation
- SDE representation

For pssMps the SDE representation has a magic feature: Can be extended after hitting zero.