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1. Introduction

These lecture notes aim at providing a (mostly) self-contained introduc-
tion to Lévy processes. We start by defining Lévy processes in Section 2
and study the simple but very important example of a Lévy jump-diffusion
in Section 3. In Section 4 we discuss infinitely divisible distributions, as the
distribution of a Lévy process at any fixed time has this property. In the sub-
sequent section we prove the Lévy–Khintchine formula, which characterises
all infinitely divisible distributions. We then prove the Lévy–Itô decomposi-
tion of a Lévy process, which is an explicit existence result explaining how
to construct a Lévy process based on a given infinitely divisible distribution.
In Section 7, we make use of the Lévy–Itô decomposition to derive necesarry
and sufficient conditions for a Lévy process to be of (in)finite variation and a
subordinator, respectively. In Section 8 we study elementary operations such
as linear transformations, projections and subordination. We then move on
to moments and martingales followed by a brief section on simulation fol-
lowed by a number of popular models used mostly in mathematical finance.
Then there is a section on simulation and we finish with a brief treatment
of stochastic integration.

2. Definition of Lévy processes

2.1. Notation and auxiliary definitions. Let (Ω,F ,F, IP) denote a sto-
chastic basis, or filtered probability space, i.e. a probability space (Ω,F , IP)
endowed with a filtration F = (Ft)t≥0.

A filtration is an increasing family of sub-σ-algebras of F , i.e. Fs ⊂ Ft
for s ≤ t. By convention F∞ = F and F∞− =

∨
s≥0Fs.

A stochastic basis satisfies the usual conditions if it is right-continuous,
i.e. Ft = Ft+, where Ft+ =

⋂
s>tFs, and is complete, i.e. the σ-algebra F is

IP-complete and every Ft contains all IP-null sets of F .

Definition 2.1. A stochastic process X = (Xt)t≥0 has independent incre-
ments if, for any n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, the random variables
Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

Alternatively, we say that X has independent increments if, for any 0 ≤
s < t, Xt −Xs is independent of Fs.

Definition 2.2. A stochastic process X = (Xt)t≥0 has stationary incre-
ments if, for any s, t ≥ 0, the distribution of Xt+s − Xs does not depend
on s. Alternatively, we say that X has stationary increments if, for any
0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s.

Definition 2.3. A stochastic process X = (Xt)t≥0 is stochastically contin-
uous if, for every t ≥ 0 and ε > 0

lim
s→t

IP(|Xs −Xt| > ε) = 0.

2.2. Definition of Lévy processes. We will now define Lévy processes
and then present some well-known examples, like the Brownian motion and
the Poisson process.

Definition 2.4 (Lévy process). An adapted, Rd-valued stochastic process
X = (Xt)t≥0 with X0 = 0 a.s. is called a Lévy process if:
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(L1) X has independent increments,
(L2) X has stationary increments,
(L3) X is stochastically continuous.

In the sequel, we will always assume that X has càdlàg paths. The next
two results provide the justification.

Lemma 2.5. If X is a Lévy process and Y is a modification of X (i.e.
IP(Xt 6= Yt) = 0 a.s. for each t ≥ 0), then Y is a Lévy process and has the
same characteristics as X.

Proof. [App09, Lemma 1.4.8]. �

Theorem 2.6. Every Lévy process has a unique càdlàg modification that is
itself a Lévy process.

Proof. [App09, Theorem 2.1.8] or [Pro04, Theorem I.30]. �

2.3. Examples. The following are some well-known examples of Lévy pro-
cesses:

• The linear drift is the simplest Lévy process, a deterministic process;
see Figure 5.3 for a sample path.
• The Brownian motion is the only non-deterministic Lévy process

with continuous sample paths; see Figure 5.3 for a sample path.
• The Poisson, the compound Poisson and the compensated (com-

pound) Poisson processes are also examples of Lévy processes; see
Figure 5.3 for a sample path of a compound Poisson process.

The sum of a linear drift, a Brownian motion and a (compound or com-
pensated) Poisson process is again a Lévy process. It is often called a “jump-
diffusion” process. We shall call it a Lévy jump-diffusion process, since there
exist jump-diffusion processes which are not Lévy processes. See Figure 5.3
for a sample path of a Lévy jump-diffusion process.

3. Toy example: a Lévy jump-diffusion

Let us study the Lévy jump-diffusion process more closely; it is the sim-
plest Lévy process we have encountered so far that contains both a diffusive
part and a jump part. We will calculate the characteristic function of the
Lévy jump-diffusion, since it offers significant insight into the structure of
the characteristic function of general Lévy processes.

Assume that the process X = (Xt)t≥0 is a Lévy jump-diffusion, i.e. a
linear deterministic process, plus a Brownian motion, plus a compensated
compound Poisson process. The paths of this process are described by

Xt = bt+ σWt +
( Nt∑
k=1

Jk − tλβ
)
, (3.1)

where b ∈ R, σ ∈ R>0, W = (Wt)t≥0 is a standard Brownian motion,
N = (Nt)t≥0 is a Poisson process with intensity λ ∈ R>0 (i.e. IE[Nt] = λt),
and J = (Jk)k≥1 is an i.i.d. sequence of random variables with probability
distribution F and IE[Jk] = β < ∞. Here F describes the distribution of
the jumps, which arrive according to the Poisson process N . All sources of
randomness are assumed mutually independent.
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Figure 2.1. Sample paths of a linear drift processs (top-
left), a Brownian motion (top-right), a compound Poisson
process (bottom-left) and a Lévy jump-diffusion.

The characteristic function of Xt, taking into account that all sources of
randomness are independent, is

IE
[
eiuXt

]
= IE

[
exp

(
iu
(
bt+ σWt +

Nt∑
k=1

Jk − tλβ
))]

= exp
[
iubt

]
IE
[

exp
(
iuσWt

)]
IE
[

exp
(
iu

Nt∑
k=1

Jk − iutλβ
)]

;

recalling that the characteristic functions of the normal and the compound
Poisson distributions are

IE[eiuσWt ] = e−
1
2
σ2u2t, Wt ∼ N (0, t)

IE[eiu
∑Nt
k=1 Jk ] = eλt(IE[eiuJk−1]), Nt ∼ Poi(λt)

(cf. Example 4.14 and Exercise 1), we get

= exp
[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt
(
IE[eiuJk − 1]− iuIE[Jk]

)]
= exp

[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt
(
IE[eiuJk − 1− iuJk]

)]
;
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and since the distribution of Jk is F we have

= exp
[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt

∫
R

(
eiux − 1− iux

)
F (dx)

]
.

Finally, since t is a common factor, we can rewrite the above equation as

IE
[
eiuXt

]
= exp

[
t
(
iub− u2σ2

2
+

∫
R

(eiux − 1− iux)λF (dx)
)]
. (3.2)

We can make the following observations based on the structure of the char-
acteristic function of the random variable Xt from the Lévy jump-diffusion:

(O1) time and space factorize;
(O2) the drift, the diffusion and the jump parts are separated ;
(O3) the jump part decomposes to λ× F , where λ is the expected number

of jumps and F is the distribution of jump size.

One would naturally ask if these observations are true for any Lévy process.
The answer for (O1) and (O2) is yes, because Lévy processes have stationary
and independent increments. The answer for (O3) is no, because there exist
Lévy processes with infinitely many jumps (on any compact time interval),
thus their expected number of jumps is also infinite.

Since the characteristic function of a random variable determines its dis-
tribution, (3.2) provides a characterization of the distribution of the random
variables Xt from the Lévy jump-diffusion X. We will soon see that this dis-
tribution belongs to the class of infinitely divisible distributions and that
equation (3.2) is a special case of the celebrated Lévy-Khintchine formula.

3.1. The basic connections. The next sections will be devoted to estab-
lishing the connection between the following mathematical objects:

• Lévy processes X = (Xt)t≥0

• infinitely divisible distributions ρ = L(X1)
• Lévy triplets (b, c, ν).

The following commutative diagram displays how these connections can be
proved, where LK stands for the Lévy–Khintchine formula, LI for the Lévy–
Itô decomposition, CFE for the Cauchy functional equation and SII for
stationary and independent increments.

(Xt)t≥0
SII //

CFE

%%KK
KK

KK
KK

K L(X1) = ρ
LI

oo
4<

LKt| qqq
qqq

qqq

qqq
qqq

qqq

(b, c, ν)
LI

eeKKKKKKKKK

Figure 3.2. The basic connections between Lévy processes,
infinitely divisible distributions and Lévy triplets.
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Exercise 1. Let X = (Xt)t≥0 be a compound Poisson process with intensity
λ > 0 and jump distribution F , i.e.

Xt =

Nt∑
k=1

Jk,

where N = (Nt)t≥0 is a Poisson process with IE[Nt] = λt and J = (Jk)k≥0

is an i.i.d. sequence of random variables with distribution F . Show that

IE
[
eiuXt

]
= exp

λt ∫
R

(eiux − 1)F (dx)

 .

Exercise 2. Consider the setting of the previous exercise and assume that
IE[Jk] = β < ∞. Show that the compensated compound Poisson process
X = (Xt)t≥0 is a martingale, where

Xt = Xt − λβt.

4. Infinitely Divisible distributions

4.1. Notation and auxiliary results. Let X be a random variable and
denote by IPX its law, by ϕX its characteristic function, and by MX its
moment generating function. They are related as follows:

ϕX(u) = IE
[
ei〈u,X〉

]
=

∫
Ω

ei〈u,X〉dIP =

∫
Rd

ei〈u,x〉IPX(dx) = MX(iu), (4.1)

for all u ∈ Rd.
Let ρ be a probability measure; we will denote by ρ̂ its characteristic

function (or Fourier transform), i.e.

ρ̂(u) =

∫
Rd

ei〈u,x〉ρ(dx). (4.2)

Let S ⊆ Rd, we will denote by B(S) the Borel σ-algebra of S and by
Bb(S) the space of bounded, Borel measurable functions from S to R. We

will also denote convergence in law by
d−→, weak convergence by

w−→ and

uniform convergence on compact sets by
uc−→.

We also recall some results from probability theory and complex analysis.

Proposition 4.1. Let ρ, ρn, n ∈ N, be probability measures on Rd.
(1) If ρn

w−→ ρ then ρ̂n(u)
uc−→ ρ̂(u).

(2) If ρ̂n(u) −→ ρ̂(u) for every u, then ρn
w−→ ρ.

(3) Let f, fn : Rd → C, n = 1, 2, . . . , be continuous functions such that
f(0) = fn(0) = 1 and f(u) 6= 0 and fn(u) 6= 0, for any u and any n.

If fn(u)
uc−→ f(u), then also log fn(u)

uc−→ log f(u).

Proof. For (1) and (2) see [Shi96, p. 325], for (3) see [Sat99, Lemma 7.7]. �

Theorem 4.2 (Lévy continuity theorem). Let (ρn)n∈N be probability mea-
sures on Rd whose characteristic functions ρ̂n(u) converge to some function
ρ̂(u), for all u, where ρ̂ is continuous at 0. Then, ρ̂ is the characteristic

function of a probability distribution ρ and ρn
d−→ ρ.
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Proof. [Dud02, Theorem 9.8.2] �

4.2. Convolution. Let µ, ρ be two probability measures on Rd. We define
the convolution of µ and ρ as

(µ ∗ ρ)(A) =

∫
Rd

∫
Rd

1A(x+ y)µ(dx)ρ(dy), (4.3)

for each A ∈ B(Rd).
Denote by A − x := {y − x : y ∈ A}, then we have that 1A(x + y) =

1A−x(y) = 1A−y(x), and Fubini’s theorem yields

(µ ∗ ρ)(A) =

∫
Rd

µ(A− x)ρ(dx) =

∫
Rd

ρ(A− y)µ(dy). (4.4)

Proposition 4.3. The convolution of two probability measures is again a
probability measure.

Proof. [App09, Proposition 1.2.1]. �

Definition 4.4. We define the n-fold convolution of a measure ρ as

ρ∗n = ρ ∗ · · · ∗ ρ︸ ︷︷ ︸
n times

. (4.5)

We say that the measure ρ has a convolution n-th root if there exists a
measure ρn such that

ρ = (ρn)∗n. (4.6)

In the sequel we will make use of the following results.

Proposition 4.5. Let ρ1, ρ2, be Borel probability measures on Rd and let
f ∈ Bb(Rd), then∫

Rd

f(y)(ρ1 ∗ ρ2)(dy) =

∫
Rd

∫
Rd

f(x+ y)ρ1(dx)ρ2(dy). (4.7)

Proof. [App09, Proposition 1.2.2(1)]. �

Corollary 4.6. Let X1, X2 be independent random variables with marginals
ρ1, ρ2. Then, for any f ∈ Bb(Rd)

IE[f(X1 +X2)] =

∫
Rd

f(x)(ρ1 ∗ ρ2)(dx). (4.8)

In particular, for the indicator function we get

IP(X1 +X2 ∈ A) = IE[1A(X1 +X2)] = (ρ1 ∗ ρ2)(A), (4.9)

where A ∈ B(Rd).

Proof. Direct consequences of independence and Proposition 4.5. �
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4.3. Infinite divisibility. We start by defining infinitely divisible random
variables and then discuss some properties of their probability distributions
and characteristic functions.

Definition 4.7. A random variable X is infinitely divisible if, for all n ∈ N,

there exist i.i.d. random variables X
(n)
1 , . . . , X

(n)
n such that

X
d
= X

(n)
1 + · · ·+X(n)

n . (4.10)

The next result provides some insight into the structure of infinitely di-
visible distributions.

Proposition 4.8. The following are equivalent:

(1) X is infinitely divisible;
(2) IPX has a convolution n-th root that is itself the law of a random

variable, for all n ∈ N;
(3) ϕX has an n-th root that is itself the characteristic function of a

random variable, for all n ∈ N.

Proof. (1)⇒ (2) Since X is infinitely divisible, we have for any A ∈ B(Rd)

IPX(A) = IP(X ∈ A) = IP(X
(n)
1 + · · ·+X(n)

n ∈ A)

= (IP
X

(n)
1

∗ · · · ∗ IP
X

(n)
n

)(A) (by independence and (4.9))

= (IPX(n) ∗ · · · ∗ IPX(n))(A) (by identical laws)

= (IPX(n))∗n(A). (4.11)

(2)⇒ (3) Since IPX has a convolution n-th root, we have

ϕX(u) =

∫
Rd

ei〈u,x〉IPX(dx) =

∫
Rd

ei〈u,x〉(IPX(n) ∗ · · · ∗ IPX(n))(dx)

=

∫
Rd

. . .

∫
Rd

ei〈u,x1+···+xn〉IPX(n)(dx1) . . . IPX(n)(dxn) (Prop. 4.5)

=

n∏
i=1

∫
Rd

ei〈u,xi〉IPX(n)(dxi) (by independence)

=
n∏
i=1

ϕX(n)(u) =
(
ϕX(n)(u)

)n
. (4.12)

(3) ⇒ (1) Choose X
(n)
1 , . . . , X

(n)
n to be independent copies of a given r.v.

X(n). Since the characteristic function has an n-th root, we get

IE
[
ei〈u,X〉

]
= ϕX(u)

=
(
ϕX(n)(u)

)n
=

n∏
i=1

ϕ
X

(n)
i

(u)

= IE
[
e
i
〈
u,X

(n)
1 +···+X(n)

n

〉]
(by independence), (4.13)

and the result follows, since the characteristic function deteremines the law
of a random variable. �
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These results motivate us to give the following more general definition of
infinite divisibility.

Definition 4.9. A probability measure ρ is infinitely divisible if, for all
n ∈ N, there exists another probability measure ρn such that

ρ = ρn ∗ · · · ∗ ρn︸ ︷︷ ︸
n times

. (4.14)

Proposition 4.10. A probability measure ρ is infinitely divisible if and only
if, for all n ∈ N, there exists another probability measure ρn such that

ρ̂(u) =
(
ρ̂n(u)

)n
. (4.15)

Proof. Similar to the proof of Proposition 4.8, thus left as an exercise. �

Next, we will discuss some properties of infinitely divisible distributions,
in particular that they are closed under convolutions and weak limits.

Lemma 4.11. If µ, ρ are infinitely divisible probability measures then µ ∗ ρ
is also infinitely divisible.

Proof. Since µ and ρ are infinitely divisible, we know that for any n ∈ N it
holds

µ = (µn)∗n and ρ = (ρn)∗n. (4.16)

Hence, from the commutativity of the convolution we get that

µ ∗ ρ = (µn)∗n ∗ (ρn)∗n = (µn ∗ ρn)∗n. �

Lemma 4.12. If ρ is infinitely divisible then ρ̂(u) 6= 0 for any u ∈ Rd.

Proof. Since ρ is infinitely divisible, we know that for every n ∈ N there
exists a measure ρn such that ρ̂ = (ρ̂n)n. Using [Sat99, Prop. 2.5(v)] we have

that |ρ̂n(u)|2 = |ρ̂(u)|2/n is a characteristic function. Define the function

ϕ(u) = lim
n→∞

|ρ̂n(u)|2 = lim
n→∞

|ρ̂(u)|2/n =

{
1, if ρ̂(u) 6= 0

0, if ρ̂(u) = 0.

Since ρ̂(0) = 1 and ρ̂ is a continuous function, we get that ϕ(u) = 1 in a
neighborhood of 0. Now, using Lévy’s continuity theorem we get that ϕ(u)
is a continuous function, thus ϕ(u) = 1 for all u ∈ Rd. Hence ρ̂(u) 6= 0 for
any u ∈ Rd. �

Lemma 4.13. If (ρk)k≥0 is a sequence of infinitely divisible distributions

and ρk
w−→ ρ, then ρ is also infinitely divisible.

Proof. Since ρk
w−→ ρ as k → ∞ we get from Proposition 4.1(1) that

ρ̂k(z)
uc−→ ρ̂(z) and ρ̂ is the characteristic function of the probability measure

ρ. In order to prove the claim, it suffices to show that ρ̂1/n is well-defined
and the characteristic function of a probability measure. Then, the trivial
equality ρ̂(z) =

(
ρ̂(z)1/n

)n
yields that ρ is infinitely divisible.

Since ρ̂k and ρ̂ are characteristic functions, we know that they are con-
tinuous and ρ̂k(0) = ρ̂(0) = 1 for every k. Moreover, ρ̂k is the characteristic
function of an infinitely divisible distribution, thus from Lemma 4.12 we get
that ρ̂k(u) 6= 0 for any k, u. One can also show that ρ̂(u) 6= 0 for every u, see
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[Sat99, Lemma 7.8]. Therefore, we can apply Proposition 4.1(3) and we get

that log ρ̂k(u)
uc−→ log ρ̂(u), hence also ρ̂k(u)1/n uc−→ ρ̂(u)1/n, for every n, as

k →∞. We have that ρ̂
1/n
k is a continuous function, and using the uniform

convergence to ρ̂1/n, we can conclude that this is also continuous (around

zero). Now, an application of Lévy’s continuity theorem yields that ρ̂1/n is
the characteristic function of a probability distribution. �

4.4. Examples. Below we present some examples of infinitely divisible dis-
tributions. In particular, using Proposition 4.8 we can easily show that the
normal, the Poisson and the exponential distributions are infinitely divisible.

Example 4.14 (Normal distribution). Let X ∼ N (µ, σ2), then we have

ϕX(u) = exp

(
iuµ− 1

2
u2σ2

)
= exp

(
n
[
iu
µ

n
− 1

2
u2σ

2

n

])
(4.17)

=

(
exp

[
iu
µ

n
− 1

2
u2σ

2

n

])n
=
(
ϕX(n)(u)

)n
,

where X(n) ∼ N (µn ,
σ2

n ).

Example 4.15 (Poisson distribution). Let X ∼ Poi(λ), then we have

ϕX(u) = exp
(
λ(eiu − 1)

)
=

(
exp

[λ
n

(eiu − 1)
])n

(4.18)

=
(
ϕX(n)(u)

)n
,

where X(n) ∼ Poi(λn).

Example 4.16 (Exponential distribution). Let X ∼ Exp(λ), then we have

ϕX(u) =

(
1− iu

λ

)−1

=

[(
1− iu

λ

)− 1
n

]n
(4.19)

=
(
ϕX(n)(u)

)n
,

where X(n) ∼ Γ( 1
n , λ).

Remark 4.17. Other examples of infinitely divisible distributions are the
geometric, the negative binomial, the Cauchy and the strictly stable distri-
butions. Counter-examples are the uniform and the binomial distributions.

Exercise 3. Show that the law of the random variable

Xt = bt+ σWt +

Nt∑
k=1

Jk, (t ≥ 0, fixed) (4.20)

is infinitely divisible, without using Proposition 4.8.
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4.5. Lévy processes have infinitely divisible laws. We close this sec-
tion by taking a glimpse of the deep connections between infinitely divis-
ible distributions and Lévy processes. In particular, we will show that if
X = (Xt)t≥0 is a Lévy process then Xt is an infinitely divisible random
variable (for all t ≥ 0).

Lemma 4.18. Let X = (Xt)t≥0 be a Lévy process. Then the random vari-
ables Xt, t ≥ 0, are infinitely divisible.

Proof. Let X = (Xt)t≥0 be a Lévy process; for any n ∈ N and any t > 0 we
trivially have that

Xt = X t
n

+ (X 2t
n
−X t

n
) + . . .+ (Xt −X (n−1)t

n

). (4.21)

The stationarity of the increments of the Lévy process yields that

X tk
n
−X t(k−1)

n

d
= X t

n
,

for any k ≥ 1, while the independence of the increments yields that the
random variables X tk

n
−X t(k−1)

n

, k ≥ 1, are indepedent of each other. Thus,

(X tk
n
−X t(k−1)

n

)k≥1 is an i.i.d. sequence of random variables and, from Defini-

tion 4.7, we conclude that the random variable Xt is infinitely divisible. �

5. The Lévy–Khintchine representation

The next result provides a complete characterization of infinitely divisible
distributions in terms of their characteristic functions. This is the celebrated
Lévy-Khintchine formula. B. de Finetti and A. Kolmogorov were the first
to prove versions of this representation under certain assumptions. P. Lévy
and A. Khintchine indepedently proved it in the general case, the former by
analyzing the sample paths of the process and the latter by a direct analytic
method.

5.1. Statement, “if” part. We first define a Lévy measure and then state
the Lévy–Khintchine representation and prove the “if part” of the theorem.

Definition 5.1 (Lévy measure). Let ν be a Borel measure on Rd. We say
that ν is a Lévy measure if it satisfies

ν({0}) = 0 and

∫
Rd

(|x|2 ∧ 1)ν(dx) <∞. (5.1)

Remark 5.2. Since |x|2 ∧ ε ≤ |x|2 ∧ 1 for all 0 < ε ≤ 1, it follows from
(5.1) that ν

(
(−ε, ε)c

)
<∞ for all ε > 0. In other words, any Lévy measure

becomes a probability measure once restricted to the complement of an ε-
neighborhood of the origin (after an appropriate normalization).

Theorem 5.3 (Lévy–Khintchine). A measure ρ is infinitely divisible if and
only if there exists a triplet (b, c, ν) with b ∈ Rd, c a symmetric, non-negative
definite, d× d matrix, and ν a Lévy measure, such that

ρ̂(u) = exp

i 〈u, b〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉 1D

)
ν(dx)

 . (5.2)
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Here D denotes the closed unit ball in Rd, i.e. D := {|x| ≤ 1}.

Definition 5.4. We will call (b, c, ν) the Lévy or characteristic triplet of
the infinitely divisible measure ρ. We call b the drift characteristic and c the
Gaussian or diffusion characteristic.

Example 5.5. An immediate consequence of Definitions 5.1 and 5.4 and
Theorem 5.3 is that the distribution of the r.v. X1 from the Lévy jump-
diffusion is infinitely divisible with Lévy triplet(

b−
∫
Dc
xλF (dx), σ2, λ× F

)
.

Proof of Theorem 5.3, “If” part. Let (εn)n∈N be a sequence in R, monotonic
and decreasing to zero (e.g. εn = 1

n). Define for all u ∈ Rd and n ∈ N

ρ̂n(u) = exp

(
i
〈
u, b−

∫
εn<|x|≤1

xν(dx)
〉
− 〈u, cu〉

2
+

∫
|x|>εn

(ei〈u,x〉 − 1)ν(dx)

)
.

Each ρ̂n is the characteristic function of the convolution of a normal and a
compound Poisson distribution, hence ρ̂n is the characteristic function of an
infinitely divisible probability measure ρn. We clearly have that

lim
n→∞

ρ̂n(u) = ρ̂(u).

Then, Lévy’s continuity theorem and Lemma 4.13 yield that ρ̂ is the char-
acteristic function of an infinitely divisible probability measure ρ, provided
that ρ̂ is continuous at 0.

Now, continuity of ρ̂ at 0 boils down to the continuity of the integral term
in (5.2), i.e.

ψν(u) :=

∫
Rd

(ei〈u,x〉 − 1− i 〈u, x〉 1D(x))ν(dx)

=

∫
D

(ei〈u,x〉 − 1− i 〈u, x〉)ν(dx) +

∫
Dc

(ei〈u,x〉 − 1)ν(dx).

Using Taylor’s expansion, the Cauchy–Schwarz inequality, the definition of
the Lévy measure and dominated convergence, we get

|ψν(u)| ≤ 1

2

∫
D

| 〈u, x〉 |2ν(dx) +

∫
Dc

|ei〈u,x〉 − 1|ν(dx)

≤ |u|
2

2

∫
D

|x2|ν(dx) +

∫
Dc

|ei〈u,x〉 − 1|ν(dx)

−→ 0 as u→ 0. �

Exercise 4 (Frullani integral). (i) Consider a function f such that f ′ exists
and is continuous, and f(0), f(∞) are finite. Show that

∞∫
0

f(ax)− f(bx)

x
dx = (f(0)− f(∞)) log

(
b

a

)
,

for b > a > 0.



AN INTRODUCTION TO LÉVY PROCESSES 13

(ii) Consider the function f(x) = e−x and set a = α > 0 and b = β = α−z
with z < 0. Show that

exp
( ∞∫

0

(ezx − 1)
β

x
e−αxdx

)
=

1

(1− z/α)β
.

Explain why this equality remains true for z ∈ C with <z ≤ 0.

Exercise 5. Consider the Γ(α, β) distribution, described by the density

fα,β(x) =
αβ

Γ(β)
xβ−1e−αx,

concentrated on (0,∞).
(i) Compute the characteristic function of the Γ(α, β) distribution and

show it is infinitely divisible.
(ii) Show that the Lévy triplet of the Γ(α, β) distribution is

b =

1∫
0

xν(dx), c = 0, ν(dx) = βx−1e−αxdx.

5.2. Truncation functions and uniqueness. We will now introduce trun-
cation functions and discuss about the uniqueness of the representation (5.2).

The integrand in (5.2) is integrable with respect to the Lévy measure ν
because it is bounded outside any neighborhoud of zero and

ei〈u,x〉 − 1− i 〈u, x〉 1D(x) = O(|x|2) as |x| → 0, (5.3)

for any fixed u. There are many other ways to construct an integrable in-
tegrand and we will be particularly interested in continuous ones, because
they are suitable for limit arguments. This leads to the notion of a trunca-
tion function. The following definitions are taken from [JS03] and [Sat99]
respectively.

Definition 5.6. A truncation function is a bounded function h : Rd → Rd
that satisfies h(x) = x in a neighborhood of zero.

Definition 5.7. A truncation function h′ : Rd → R is a bounded and
measurable function, satisfying

h′(x) = 1 + o(|x|), as |x| → 0,

h′(x) = O(1/|x|), as |x| → ∞.
(5.4)

Remark 5.8. The two definitions are related via h(x) = x · h′(x).

Example 5.9. The following are some well-known examples of truncation
functions:

(i) h(x) = x1D(x), typically called the canonical truncation function;
(ii) h(x) ≡ 0 and h(x) ≡ x, are also commonly used truncation functions;

note that contrary to the other two examples, these are not always
permissible choices;

(iii) h(x) = x
1+|x|2 , a continuous truncation function.
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Figure 5.3. Illustration of the canonical and the continuous
truncation functions from Example 5.9.

The Lévy–Khintchine representation of ρ̂ in (5.2) depends on the choice
of the truncation function. Indeed, if we use another truncation function h
instead of the canonical one, then (5.2) can be rewritten as

ρ̂(u) = exp

i 〈u, bh〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, h(x)〉

)
ν(dx)

 ,

(5.5)

with bh defined as follows:

bh = b+

∫
Rd

(
h(x)− x1D(x)

)
ν(dx). (5.6)

If we want to stress the dependence of the Lévy triplet on the truncation
function, we will denote it by

(bh, c, ν)h or (b, c, ν)h.

Note that the diffusion characteristic c and the Lévy measure ν are invariant
with respect to the choice of the truncation function.

Remark 5.10. There is no rule about which truncation function to use,
among the permissible choices. One simply has to be consistent with ones
choice of a truncation function. That is, the same choice should be made for
the Lévy–Khintchine representation of the characteristic function, the Lévy
triplet and the path decomposition of the Lévy process.

Example 5.11. Let us revisit the Lévy jump-diffusion process (3.1). In
this example, since the Lévy measure is finite and we have assumed that
IE[Jk] < ∞, all the truncation functions of Example 5.9 are permissible.
The Lévy triplet of this process with respect to the canonical truncation
function was presented in Example 5.5. The triplets with respect to the zero
and the linear truncation functions are(

b−
∫
R
xλF (dx), σ2, λ× F

)
0

and
(
b, σ2, λ× F

)
id
.

Although the Lévy–Khintchine representation depends on the choice of
the truncation function, the Lévy triplet determines the law of the distribu-
tion uniquely (once the truncation function has been fixed).
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Proposition 5.12. The representation of ρ̂ by (b, c, ν) in (5.2) is unique.

Sketch of Proof. We will outline the argument for the diffusion coefficient c;
the complete proof can be found in [Sat99, Theorem 8.1(ii)].

Let ρ̂ be expressed by (b, c, ν) according to (5.2). By Taylor’s theorem we
get that

|ei〈u,x〉 − 1− i 〈u, x〉 1D(x)| ≤ 1

2
|u|2|x|21D(x) + 21Dc(x). (5.7)

Since the exponent in (5.2) is continuous in u, we have

log ρ̂(su) = −s2 〈u, cu〉
2

+ is 〈u, b〉+

∫
Rd

(
eis〈u,x〉 − 1− is 〈u, x〉 1D(x)

)
ν(dx),

for s ∈ R. Now, by (5.7) and dominated convergence we get

s−2 log ρ̂(su) −→ −〈u, cu〉
2

, as s→∞. (5.8)

Therefore, the diffusion coefficient c is uniquely identified by ρ. The proof
for ν is similar in spirit, while once c, ν are uniquely determined then b is
identified as well. �

5.3. Proof, “only if” part. The next theorem contains an essential step
in the proof of the “only if” part of the Lévy–Khintchine representation
(Theorem 5.3). We denote by C] the space of bounded continuous functions

f : Rd → R, vanishing in a neighborhood of 0.

Theorem 5.13. Let h′ : Rd → R be a continuous truncation function, i.e.
satisfying (5.4). Suppose that ρn, n ∈ N, are infinitely divisible distributions
on Rd and that each ρ̂n has the Lévy–Khintchine representation with triplet

(βn, cn, νn)h. Let ρ be a probability distribution on Rd. Then ρn
w−→ ρ if

and only if (i) ρ is infinitely divisible and (ii) ρ̂ has the Lévy–Khintchine
representation with triplet (β, c, ν)h, where β, c and ν satisfy the following
conditions:

(1) If f ∈ C] then

lim
n→∞

∫
Rd

f(x)νn(dx) =

∫
Rd

f(x)ν(dx). (5.9)

(2) Define the symmetric, non-negative definite matrices cn,ε via

〈u, cn,εu〉 = 〈u, cnu〉+

∫
|x|≤ε

〈u, x〉2 νn(dx). (5.10)

Then

lim
ε↓0

lim sup
n→∞

∣∣ 〈u, cn,εu〉 − 〈u, cu〉 ∣∣ = 0 for u ∈ Rd. (5.11)

(3) βn → β.

Proof. “Only If” part. Assume that ρn −→ ρ. Then, using Lemmata 4.13
and 4.12 we get that ρ is infinitely divisible and ρ̂(u) 6= 0 for all u. Moreover,
it follows from Proposition 4.1 that

log ρ̂n(u) −→ log ρ̂(u) (5.12)
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uniformly on compact sets.
Define the measure φn(dx) = (|x|2 ∧ 1)νn(dx), and note that φn(Rd) =∫

Rd φn(dx) <∞ by the definition of the Lévy measure. We claim that (φn)
is tight, i.e. that

sup
n
φn(Rd) <∞ and lim

l→∞
sup
n

∫
|x|>l

φn(dx) = 0. (5.13)

A proof of tightness can be found in [Sat99, pp. 43-44]. Then, by Prokhorov’s
selection theorem there exists a subsequence (φnk) that converges to some
finite measure φ; cf. [Bil99, §1.6].

Next, define the measure ν via: ν({0}) = 0 and ν(dx) = (|x|2∧1)−1φ(dx)
on the set {|x| > 0}. The measure φ might have a point mass at 0, but this
is ignored when defining ν. Let us denote

g(u, x) = ei〈u,x〉 − 1− i 〈u, h(x)〉 , (5.14)

which is bounded and continuous in x, for fixed u, due to the choice of a
continuous truncation function h. We have that

log ρ̂n(u) = i 〈u, βn〉 −
1

2
〈u, cnu〉+

∫
Rd

g(u, x)νn(dx)

= i 〈u, βn〉 −
1

2
〈u, cn,εu〉+ In,ε + Jn,ε, (5.15)

where

In,ε :=

∫
|x|≤ε

(
g(u, x) +

1

2
〈u, x〉2

)
(|x|2 ∧ 1)−1ρn(dx) (5.16)

and

Jn,ε :=

∫
|x|>ε

g(u, x)(|x|2 ∧ 1)−1ρn(dx). (5.17)

Consider the set E := {ε > 0 :
∫
|x|=ε ρ(dx) = 0}, then

lim
k→∞

Jnk,ε =

∫
|x|>ε

g(u, x)(|x|2 ∧ 1)−1ρ(dx) (5.18)

hence

lim
E3ε↓0

lim
k→∞

Jnk,ε =

∫
Rd

g(u, x)ν(dx), (5.19)

because g ∈ C]. Furthermore, we have that

lim
ε↓0

sup
n
|In,ε| = 0, (5.20)

since (
g(u, x) +

1

2
〈u, x〉2

)
(|x|2 ∧ 1)−1 −→

x→0
0, (5.21)

by the definition of the truncation function h.
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Now, we consider the real and imaginary parts of (5.15) separately; then,
using (5.13), (5.19) and (5.20), we get that

lim
E3ε↓0

lim sup
k→∞

〈u, cnk,εu〉 = lim
E3ε↓0

lim inf
k→∞

〈u, cnk,εu〉 (5.22)

lim sup
k→∞

〈u, βnk〉 = lim inf
k→∞

〈u, βnk〉 (5.23)

and both sides of these equations are finite. By (5.23) we conclude that there
exists some β such that βn −→ β. Moreover, since each side of (5.22) is a
nonnegative quadratic form of u, it is equal to 〈u, cu〉 for some symmetric,
nonnegative definite matrix. In addition, we can drop the requirement ε ∈ E
in (5.22) using monotonicity. Hence, it follows that ρ̂(u) has the represen-
tation (5.2) for these β, c and ν and that (1)-(3) hold via the subsequence
(φnk). However, (β, c, ν) in the Lévy–Khintchine representation are unique,
see Proposition 5.12, thus (1) and (3) hold for the whole sequence (φn). In
addition, we can show by revisiting the arguments above that

lim
ε↓0

lim sup
n→∞

〈u, cn,εu〉 = lim
ε↓0

lim inf
n→∞

〈u, cn,εu〉 = 〈u, cu〉 (5.24)

which is equivalent to (2).
“If” part. Define the measures φn(dx) = (|x|2 ∧ 1)νn(dx) and φ(dx) =

(|x|2 ∧ 1)ν(dx) and consider the set E defined above. Condition (1) yields
(5.19) immediately. Moreover, conditions (1) and (2) imply that (φn) is
uniformly bounded, thus we get (5.19) as well. Now, using (2) and (3) we
get that

lim
n→∞

log ρ̂n(u) = i 〈u, β〉 − 1

2
〈u, cu〉+

∫
Rd

g(u, x)ν(dx).

Since the right hand side equals log ρ̂(u), we conclude that ρn −→ ρ. �

Finally, using the “only if” part of Theorem 5.13 we are ready to complete
the proof of Theorem 5.3.

Proof of Theorem 5.3, “Only If” part. Let ρ be an infinitely divisible distri-
bution. Choose a sequence tn ↓ 0 arbitrarily, and define ρn via

ρ̂n(u) = exp
(
t−1
n

(
ρ̂(u)tn − 1

) )
= exp

t−1
n

∫
Rd\{0}

(
ei〈u,x〉 − 1

)
ρtn(dx)

 .

(5.25)

Clearly, the distribution of ρn is compound Poisson and thus also infinitely
divisible. Moreover, Taylor’s expansion yields

ρ̂n(u) = exp
(
t−1
n

(
etn log ρ̂(u) − 1

))
= exp

(
t−1
n

(
tn log ρ̂(u) +O(t2n)

))
= exp

(
log ρ̂(u) +O(tn)

)
, (5.26)

for fixed u, as n→∞. Hence ρ̂n(u) −→ ρ̂(u) as n→∞.
Since ρn is infinitely divisible it has the Lévy–Khintchine representa-

tion (5.2) for some triplet (bn, cn, νn)h (in this case with h ≡ 0). However,

ρ̂n(u) −→ ρ̂(u) implies that ρn
w−→ ρ, by Proposition 4.1. Hence, using

Theorem 5.13 yields that ρ̂ has the Lévy–Khintchine representation with
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some triplet (b, c, ν)h. Now, we can rewrite this as (5.1) and the result is
proved. �

Corollary 5.14. Every infinitely divisible distribution is the limit of a se-
quence of compound Poisson distributions.

5.4. The Lévy–Khintchine formula for Lévy processes. In section 4.5
we showed that for any Lévy process X = (Xt)t≥0, the random variables Xt

are infinitely divisible. Next, we would like to compute the characteristic
function of Xt. Since Xt is infinitely divisible for any t ≥ 0, we know that
X1 is also infinitely divisible and has the Lévy–Khintchine representation in
terms of some triplet (b, c, ν).

Definition 5.15. We define the Lévy exponent ψ of X by

ψ(u) = i 〈u, b〉 − 〈u, cu〉
2

+

∫
R

(
ei〈u,x〉 − 1− i 〈u, x〉 1D(x)

)
ν(dx), (5.27)

where

IE
[
ei〈u,X1〉] = eψ(u). (5.28)

Theorem 5.16. Let X = (Xt)t≥0 be a Lévy process, then

IE
[
ei〈u,Xt〉

]
= etψ(u), (5.29)

where ψ is the Lévy exponent of X.

Proof. Define the function φu(t) = IE[ei〈u,Xt〉]. Using the independence and
stationarity of the increments we have that

φu(t+ s) = IE[ei〈u,Xt+s〉] = IE[ei〈u,Xt+s−Xs〉e〈iu,Xs〉]

= IE[ei〈u,Xt+s−Xs〉]IE[e〈iu,Xs〉] = φu(t)φu(s). (5.30)

Moreover, φu(0) = IE[ei〈u,X0〉] = 1 by definition. Since X is stochastically
continuous we can show that t 7→ φu(t) is continuous (cf. Exercise 6).

Note that (5.30) is Cauchy’s second functional equation, and the unique
continuous solution to this equation has the form

φu(t) = etϑ(u), where ϑ : Rd → C.

Now the result follows since X1 is infinitely divisible, which yields

φu(1) = IE[ei〈u,X1〉] = eψ(u).

�

Corollary 5.17. The infinitely divisible random variable Xt has the Lévy
triplet (bt, ct, νt).

Exercise 6. Let X = (Xt)t≥0 be a stochastically continuous process. Show
that the map t 7→ ϕXt(u) is continuous for every u ∈ Rd.

Exercise 7. Let X be a Lévy process with triplet (b, c, ν). Show that −X
is also a Lévy process and determine its triplet.
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6. The Lévy–Itô decomposition

In the previous sections, we showed that for any Lévy processX = (Xt)t≥0

the random variables Xt, t ≥ 0, have an infinitely divisible distribution and
determined this distribution using the Lévy–Khintchine representation. The
aim of this section is to prove an “inverse” result: starting from an infinitely
divisible distribution ρ, or equivalently from a Lévy triplet (b, c, ν), we want
to construct a Lévy process X = (Xt)t≥0 such that IPX1 = ρ.

Theorem 6.1. Let ρ be an infinitely divisible distribution with Lévy triplet
(b, c, ν), where b ∈ Rd, c ∈ Sd>0 and ν is a Lévy measure. Then, there exists a
probability space (Ω,F , IP) on which four independent Lévy processes exist,

X(1), . . . , X(4), where: X(1) is a constant drift, X(2) is a Brownian motion,
X(3) is a compound Poisson process and X(4) is a square integrable, pure
jump martingale with an a.s. countable number of jumps of magnitude less
than 1 on each finite time interval. Setting X = X(1) + · · ·+X(4), we have
that there exists a probability space on which a Lévy process X = (Xt)t≥0 is
defined, with Lévy exponent

ψ(u) = i 〈u, b〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉 1D(x)

)
ν(dx) (6.1)

for all u ∈ Rd, and path, or Lévy–Itô, decomposition

Xt = bt+
√
cWt +

t∫
0

∫
Dc

xµX(ds, dx) +

t∫
0

∫
D

x(µX − νX)(ds, dx), (6.2)

where νX = Leb⊗ ν.

6.1. Roadmap of the Proof. We first provide an informal description of
the proof, in order to motivate the mathematical tools required. Consider
the exponent in the Lévy–Khintchine formula and rewrite it as follows:

ψ(u) = ψ(1)(u) + ψ(2)(u) + ψ(3)(u) + ψ(4)(u)

= i 〈u, b〉 − 〈u, cu〉
2

+ ν(Dc)

∫
Dc

(
ei〈u,x〉 − 1

) ν(dx)

ν(Dc)

+

∫
D

(
ei〈u,x〉 − 1− i 〈u, x〉

)
ν(dx). (6.3)

Clearly ψ(1) corresponds to the characteristic exponent of a linear drift pro-
cess with rate b, ψ(2) to a Brownian motion with covariance matrix c, and
ψ(3) to a compound Poisson process with intensity λ = ν(Dc) and jump

distribution F (dx) = ν(dx)
ν(Dc)1Dc(dx).
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The most difficult part is to handle the process with characteristic expo-
nent ψ(4). We can express this as follows:

ψ(4)(u) =

∫
D

(
ei〈u,x〉 − 1− i 〈u, x〉

)
ν(dx)

=
∑
n≥0

λn ∫
Dn

(
ei〈u,x〉 − 1

)
νn(dx)− i

〈
u, λn

∫
Dn

xνn(dx)
〉 ,

where we define the discs Dn = {2−(n+1) ≤ |x| < 2−n}, the intensities

λn = ν(Dn) and the probability measures νn(dx) = ν(dx)
λn

1Dn(dx) (see again

Remark 5.2). We can intuitively understand this as the Lévy exponent of a
superposition of compound Poisson processes with arrival rates λn and jump
distributions νn, and an additional drift term that turns these processes into
martingales. In order to convert this intuition into precise mathematical
statements, we will need results on Poisson random measures and square
integrable martingales.

6.2. Poisson random measures. Let us first consider a compound Pois-
son process with drift X = (Xt)t≥0, with

Xt = bt+

Nt∑
k=1

Jk,

where b ∈ R, N is a Poisson process with intensity λ and J = (Jk)k≥0 is
an i.i.d. sequence of random variables with distribution F . This process has
a finite number of jumps in any finite time interval, and the time between
consecutive jumps is exponentially distributed with parameter λ, the rate
of the Poisson process. Denote the jump times of X by (Tk)k≥1 and, for a
set A ∈ B(R+)× B(R\{0}), define the random variable µ(A) via

µ(A) := #{k ≥ 1 : (Tk, Jk) ∈ A} =
∑
k≥1

1{(Tk,Jk)∈A}.

The random variable µ(A) takes values in N and counts the total number of
jumps that belong to the time-space set A. The following lemma provides
some important properties of µ.

Lemma 6.2. Suppose that A1, . . . , Ak, k ≥ 1 are disjoint subsets of B(R+)×
B(R\{0}). Then µ(A1), . . . , µ(Ak) are mutually independent random vari-
ables, and for each i ∈ {1, . . . , k} the random variable µ(Ai) has a Poisson
distribution with intensity

λi = λ

∫
Ai

dt× F (dx).

Moreover, for IP-a.e. realization of X, µ : B(R+)×B(R\{0})→ N∪ {∞} is
a measure.

Exercise 8. Prove Lemma 6.2. Steps and Hints:

(i) Recall that the law of {T1, . . . , Tn} conditioned on the event {Nt = n}
has the same law as the ordered independent sample from n uniformly
distributed r.v. on [0, t].
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(ii) Use (i) and the independence of Jk to show that the law of {(Tk, Jk), k =
1, . . . , n} conditioned on {Nt = n} equals the law of n independent
bivariate r.v. with common distribution t−1ds × F (dx) on [0, t] × R,
ordered in time.

(iii) Show that, for A ∈ B([0, t]) × B(R), µ(A) conditioned on {Nt = n} is
a Binomial r.v. with probability of success

∫
A t
−1ds× F (dx).

(iv) Show that

IP(µ(A1) = n1, . . . , µ(Ak) = nk|Nt = n) =
n!

n0!n1! . . . nk!

k∏
i=0

(
λi
λt

)ni
,

where n0 = n−
∑k

i=1 ni and λ0 = λt−
∑k

i=1 λi.
(v) Finally, integrate out the conditioning to show that

IP(µ(A1) = n1, . . . , µ(Ak) = nk) =
k∏
i=1

e−λi
(λi)

ni

ni!
.

The random measure introduced above is a special case of the more gen-
eral notion of a Poisson random measure, defined as follows.

Definition 6.3 (Poisson random measure). Let (E, E , ν) be a σ-finite mea-
sure space. Consider a mapping µ : E → N ∪ {∞} such that {µ(A) : A ∈ E}
is a family of random variables defined on some probability space (Ω,F , IP).
Then µ is called a Poisson random measure with intensity ν if

(1) µ is IP-a.s. a measure on (E, E);
(2) for each A ∈ E , µ(A) is Poisson distributed with parameter ν(A),

where ν(A) ∈ [0,∞];
(3) for mutually disjoint sets A1, . . . , An in E , the random variables

µ(A1), . . . , µ(An) are independent.

Remark 6.4. Note that if ν(A) = 0 then we get that IP(µ(A) = 0) = 1,
while if ν(A) =∞ then we have that IP(µ(A) =∞) = 1.

Exercise 9. Show that every Lévy measure is a σ-finite measure on Rd\{0},
i.e. there exist sets (Ai)i∈N such that ∪iAi = Rd\{0} and ν(Ai) <∞, for all
i ∈ N.

Theorem 6.5. Let (E, E , ν) be a σ-finite measure space. Then, a Poisson
random measure µ as defined above always exists.

Proof. Step 1. Assume that ν(E) <∞. There exists a standard construction
of an infinite product space (Ω,F , IP) on which the following independent
random variables are defined:

N and {v1, v2, . . . },

such that N is Poisson distributed with intensity ν(E) and each vi has the

probability distribution ν(dx)
ν(E) . Define, for every A ∈ E

µ(A) =

N∑
i=1

1{vi∈A}, (6.4)
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such that N = µ(E). For each A ∈ E and i ≥ 1, the random variables
1{vi∈A} are F-measurable, hence µ(A) is also F-measurable. Let A1, . . . , Ak
be mutually disjoint sets, then we can show that

IP(µ(A1) = n1, . . . , µ(Ak) = nk) =
k∏
i=1

e−ν(Ai)
(ν(Ai))

ni

ni!
; (6.5)

the derivation is similar to the proof of Lemma 6.2. Now, we can directly
deduce that conditions (1)–(3) in the definition of a Poisson random measure
are satisfied.

Step 2. Let ν be a σ-finite measure on (E, E). Then, there exist subsets
(Ai)i≥1 of E such that ∪iAi = E and ν(Ai) <∞. Define the measures

νi(·) := ν(· ∩Ai), i ≥ 1.

The first step yields that for each i ≥ 1 there exists a probability space
(Ωi,Fi, IPi) such that a Poisson random measure µi can be defined on
(Ai, Ei, νi), where Ei := {B ∩Ai, B ∈ E}. Now, we just have to show that

µ(·) :=
∑
i≥1

µ(· ∩Ai),

is a Poisson random measure on E with intensity ν, defined on the product
space

(Ω,F , IP) :=
⊗
i≥1

(Ωi,Fi, IPi).

. . . �

The construction of the Poisson random measure leads immediately to
the following corollaries.

Corollary 6.6. Let µ be a Poisson random measure on (E, E , ν). Then,
for every A ∈ E, we have that µ(· ∩ A) is a Poisson random measure on
(E ∩A, E ∩A, ν(· ∩A)). Moreover, if A,B ∈ E are disjoint, then the random
variables µ(· ∩A) and µ(· ∩B) are independent.

Corollary 6.7. Let µ be a Poisson random measure on (E, E , ν). Then, the
support of µ is IP-a.s. countable. If, in addition, ν is a finite measure, then
the support of µ is IP-a.s. finite.

Corollary 6.8. Assume that the measure ν has an atom, say at the point
ε ∈ E. Then, it follows from the construction of the Poisson random measure
µ that IP(µ({ε}) ≥ 1) > 0. Conversely, if ν has no atoms then IP(µ({ε}) =
0) = 1 for all singletons ε ∈ E.

6.3. Integrals wrt Poisson random measures. Let µ be a Poisson ran-
dom measure defined on the space (E, E , ν). The fact that µ is IP-a.s. a
measure allows us to use Lebesgue’s theory of integration and consider, for
a measurable function f : E → [0,∞),∫

E

f(x)µ(dx),

which is then a well-defined, [0,∞]-valued random variable. The same holds
true for a signed function f , which yields a [−∞,∞]-valued random variable,
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provided that either f+ or f− are finite. This integral can be understood as
follows: ∫

E

f(x)µ(dx) =
∑

v∈supp(µ)

f(v) ·mv,

where mv denotes the multiplicity of points at v (e.g., if µ has no atoms
then mv = 1 for every v ∈ supp(µ)). Convergence of integrals with respect
to Poisson random measures and related properties are provided by the
following result.

Theorem 6.9. Let µ be a Poisson random measure on (E, E , ν) and f :
E → Rd be a measurable function. Then:

(i) X =
∫
E f(x)µ(dx) is almost surely absolutely convergent if and only if∫

E

(1 ∧ |f(x)|)ν(dx) <∞. (6.6)

(ii) If (6.6) holds then

IE
[
ei〈u,X〉

]
= exp

∫
E

(
ei〈u,f(x)〉 − 1

)
ν(dx)

 . (6.7)

(iii) Moreover, if f ∈ L1(ν) then

IE[X] =

∫
E

f(x)ν(dx), (6.8)

while if f ∈ L2(ν) then

Var[X] =

∫
E

f(x)2ν(dx). (6.9)

Proof. Define simple functions

f(x) =
n∑
i=1

fi1Ai(x) (6.10)

where, for i = 1, . . . , n, fi are constants and Ai ⊂ E are disjoint subsets of
E such that ν(A1 ∪ · · · ∪An) <∞. Then

X =

∫
E

f(x)µ(dx) =

∫
E

n∑
i=1

fi1Ai(x)µ(dx) =
n∑
i=1

fi

∫
E

1Ai(x)µ(dx)

=
n∑
i=1

fiµ(Ai) (6.11)
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and IP(X <∞) = 1 since each µ(Ai) ∼ Poi(ν(Ai). Now

IE
[
ei〈u,X〉

]
= IE

[
ei〈u,

∑n
i=1 fiµ(Ai)〉

]
=

n∏
i=1

IE
[
ei〈u,fiµ(Ai)〉

]
=

n∏
i=1

exp
[(

ei〈u,fi〉 − 1
)
ν(Ai)

]
= exp

[
n∑
i=1

(
ei〈u,fi〉 − 1

)
ν(Ai)

]

and since f ≡ 0 on E \ (A1 ∪ · · · ∪An)

= exp

∫
E

(
ei〈u,f(x)〉 − 1

)
ν(dx)

 . (6.12)

The remainder of the proof follows the “usual” measure-theoretic recipe
of first approximating positive functions by simple, positive and increasing
ones and using monotone convergence, and then, for a general function, by
writing it as the difference of two positive functions and using the measures
ν(· ∩ {f ≥ 0}) and ν(· ∩ {f ≤ 0}); see [Kyp06, Thm. 2.7]. This shows (ii),
while (iii) follows from (ii) by differentiation and using the classical formula

IE[Xk] = (−i)k dk

dxk
ϕX(u)

∣∣
u=0

. (6.13)

In order to show (i) note that the integral on the RHS of (6.12) is infinite
for every u if IP(X =∞) = 1, while it is finite for every u if IP(X =∞) = 0.
Conversely, assume that∫

E

(
ei〈u,f(x)〉 − 1

)
ν(dx) <∞ (6.14)

for every u. Since ei〈u,f(x)〉 − 1 ≤ ei〈1,f(x)〉 − 1 for all 0 ≤ u ≤ 1 applying
dominated convergence twice yields that

lim
u↓0

∫
E

(
ei〈u,f(x)〉 − 1

)
ν(dx) = 0 (6.15)

and thus

IP(X =∞) = 0. (6.16)

. . . �

Exercise 10. Let ν be a measure on the space (E, E) and f : E → [0,∞)
be a measurable function. Then, for all u > 0, show that∫

E

(euf(x) − 1)ν(dx) <∞⇐⇒
∫
E

(1 ∧ f(x))ν(dx) <∞. (6.17)
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6.4. Poisson random measures and stochastic processes. In the se-
quel, we want to make the connection between Poisson random measures
and stochastic processes. We will work in the following σ-finite space:(

E, E , νX
)

=
(
R>0 × Rd,B(R>0)× B(Rd),Leb⊗ ν

)
where ν is a Lévy measure; see again Definition 5.1. We will denote the
Poisson random measure on this space by µX . If we consider a time-space
interval of the form [s, t] × A, s ≤ t, where A ⊂ Rd such that 0 /∈ A, then
the integral with respect to µX , denoted by∫

[s,t]

∫
A

xµX(ds, dx) =: X, (6.18)

is a compound Poisson random variable with intensity (t − s) · ν(A). This
follows directly from Theorem 6.9, while we also get that

IE
[
ei〈u,X〉

]
= exp

(
(t− s)

∫
A

(e〈u,x〉 − 1)ν(dx)

)
. (6.19)

Let us consider the collection of random variables t∫
0

∫
A

xµX(ds, dx)


t≥0

. (6.20)

Then, one would naturally expect that this is a compound Poisson stochastic
process.

Lemma 6.10. Let µX be a Poisson random measure with intensity Leb⊗ ν
and assume that A ⊂ B(Rd) such that ν(A) <∞. Then

Xt =

t∫
0

∫
A

xµX(ds, dx), t ≥ 0

is a compound Poisson process with arrival rate ν(A) and jump distribution
ν(dx)
ν(A) |A.

Proof. Since ν(A) <∞, we have from Corollary 6.7 that the support of µX

is finite. Hence, we can write Xt as follows

Xt =
∑

0≤s≤t
xµX({s} ×A) =

∑
0≤s≤t

∆Xs1{∆Xs∈A},

which shows that t 7→ Xt is a càdlàg function. Let 0 ≤ s ≤ t, then the
random variable

Xt −Xs =

∫
(s,t]

∫
A

xµX(ds, dx)

is independent from {Xu : u ≤ s}, since Poisson random measures over
disjoint sets are independent; cf. Corollary 6.6. From Theorem 6.9 we know
that

IE
[
ei〈u,Xt〉

]
= exp

t∫
A

(ei〈u,x〉 − 1)ν(dx)

 . (6.21)
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The independence of increments allows us to deduce that

IE
[
ei〈u,Xt−Xs〉

]
=

IE
[
ei〈u,Xt〉

]
IE
[
ei〈u,Xs〉

]
= exp

(
(t− s)

∫
A

(ei〈u,x〉 − 1)ν(dx)

)
= IE

[
ei〈u,Xt−s〉

]
,

which yields that the increments are also stationary. Moreover, from (6.21)
we have that Xt is compound Poisson distributed with arrival rate t · ν(A)

and jump distribution ν(dx)
ν(A) |A. Finally, we have that X = (Xt)t≥0 is a com-

pound Poisson process since it is a process with stationary and independent
increments, whose increment distributions are compound Poisson. �

Lemma 6.11. Consider the setting of the previous lemma and assume that∫
A |x|ν(dx) <∞. Then

Mt =

t∫
0

∫
A

xµX(ds, dx)− t
∫
A

xν(dx), t ≥ 0 (6.22)

is a IP-martingale relative to the filtration generated by the Poisson random
measure µX

Ft := σ
(
µX(G) : G ∈ B([0, t])× B(Rd)

)
, t ≥ 0. (6.23)

If, in addition,
∫
A |x|

2ν(dx) <∞ then M is a square-integrable martingale.

Proof. The process M = (Mt)t≥0 is clearly adapted to the filtration (Ft)t≥0

generated by µX . Moreover, Theorem 6.9 together with the assumption∫
A |x|ν(dx) <∞ immediately yield that

IE|Mt| ≤ IE

 t∫
0

∫
A

|x|µX(ds, dx)

− t∫
A

|x|ν(dx) <∞.

Using that M has stationary and independent increments, which follows
directly from Lemma 6.10, we get that, for 0 ≤ s < t,

IE[Mt −Ms|Fs] = IE[Mt−s]

= IE

 t∫
s

∫
A

xµX(ds, dx)

− (t− s)
∫
A

xν(dx) = 0,

again using Theorem 6.9. This shows the martingale property.
Next, we just have to show that M is square integrable. We have, using

the martingale property of M , the properties of the variance and Theorem
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6.9 once more, that

IE
[
M2
t

]
= Var

[
Mt

]
= Var

 t∫
s

∫
A

xµX(ds, dx)


= t

∫
A

|x|2ν(dx) <∞,

which concludes the proof. �

The results of this section allow us to construct compound Poisson pro-
cesses with jumps taking values in discs of the form Dε := {ε < |x| ≤ 1}, for
any ε ∈ (0, 1). However, we cannot consider the ball D = {|x| ≤ 1}, i.e. set
ε = 0, since there exist Lévy measures such that

∫
D |x|ν(dx) = ∞. We will

thus study the limit of the martingale M in Lemma 6.11 when the jumps
belong to Dε for ε ↓ 0.

Exercise 11. Consider the measure on Rd \ {0} provided by

ν(dx) = |x|−(1+α)1{x<0}dx+ x−(1+α)1{x>0}dx,

for α ∈ (1, 2). Show that it is a Lévy measure, such that
∫
D |x|ν(dx) =∞.

6.5. Square integrable martingales. Denote by M2
T the space of right-

continuous, zero mean, square integrable martingales. This is a Hilbert space
with inner product defined by

〈M,N〉 := IE[MTNT ].

Therefore, for any Cauchy sequence Mn in M2
T there exists an element

M ∈ M2
T such that ‖Mn −M‖ −→ 0 as n → ∞, where ‖ · ‖ = 〈·, ·〉. A

proof of this result can be found in Section 2.4 of [Kyp06]. In the sequel,
we will make use of Doob’s martingale inequality which states that for any
M ∈M2

T it holds that

IE
[

sup
0≤s≤T

M2
s

]
≤ 4IE

[
M2
T

]
.

The following result is crucial for the proof of the Lévy–Itô decomposition.

Theorem 6.12. Consider the setting of Lemma 6.10 and recall that for any
Lévy measure

∫
|x|≤1 |x|

2ν(dx) <∞. For each ε ∈ (0, 1) define the martingale

M ε
t =

t∫
0

∫
Dε

xµX(ds, dx)− t
∫
Dε

xν(dx), (6.24)

where Dε = {ε < |x| ≤ 1}. Let F t denote the completion of
⋂
s>tFs by all the

IP-null sets. Then, there exists a square integrable martingale M = (Mt)t≥0

that satisfies:

(i) for each T > 0, there exists a deterministic subsequence (εTn )n∈N with
εTn ↓ 0, along which

IP

(
lim
n→∞

sup
0≤s≤T

(
M εTn
s −Ms

)2
= 0

)
= 1,
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(ii) it is adapted to the filtration (F t)t≥0,
(iii) it has a.s. càdlàg paths,
(iv) it has stationary and independent increments,
(v) it has an a.s. countable number of jumps on each compact time interval.

Henceforth, there exists a Lévy process M = (Mt)t≥0, which is a square inte-
grable martingale with an a.s. countable number of jumps such that, for each
fixed T > 0, the sequence of martingales (M ε

t )0≤t≤T converges uniformly to
M on [0, T ] a.s. along a subsequence in ε.

Proof. (i) Consider a fixed T > 0 and set 0 < η < ε < 1, then

‖Mη −M ε‖ = IE
[
(Mη

T −M
ε
T )2
]

= IE

 T∫
0

∫
η<|x|≤ε

xµX(ds, dx)− T
∫

η<|x|≤ε

xν(dx)


2

= T

∫
η<|x|≤ε

x2ν(dx); (6.25)

see also Exercise 13. Since
∫
D |x|

2ν(dx) <∞, we have that

‖Mη −M ε‖ −→ 0, as ε ↓ 0, (6.26)

hence (M ε) is a Cauchy sequence on M2
T . Moreover, since M2

T is a Hilbert
space, there exists a martingale M = (Mt)0≤t≤T in M2

T such that

lim
ε↓0
‖M −M ε‖ = 0. (6.27)

Using Doob’s maximal inequality, we get that

lim
ε↓0

IE

[
sup

0≤s≤T
(M ε

s −Ms)
2

]
≤ 4 lim

ε↓0
‖M −M ε‖ = 0. (6.28)

This allows us to conclude that the limit does not depend on T , thus we
have a well-defined martingale limit M = (Mt)t≥0. In addition, (6.28) yields
that there exists a deterministic subsequence (εTn )n≥0, possibly depending
on T , such that

lim
εTn↓0

sup
0≤s≤T

(
M εTn
s −Ms

)2
= 0, IP-a.s. (6.29)

(ii) Follows directly from the definition of the filtration.
(iii) We can use the following facts:

• M ε has càdlàg paths and converges uniformly to M , IP-a.s.;
• the space of càdlàg functions is closed under the supremum metric.

These yield immediately that M has càdlàg paths.
(iv) We have that a.s. uniform convergence along a subsequence implies also
convergence in distribution along the same subsequence. Let 0 ≤ q < r <
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s < t ≤ T and u, v ∈ Rd, then using dominated convergence we get

IE
[

exp (i 〈u,Mt −Ms〉+ i 〈v,Mr −Mq〉)
]

= lim
n→∞

IE
[
exp

(
i
〈
u,M

εTn
t −M εTn

s

〉
+ i
〈
v,M εTn

r −M εTn
q

〉)]
= lim

n→∞
IE
[
exp

(
i
〈
u,M

εTn
t−s

〉)]
IE
[
exp

(
i
〈
v,M

εTn
r−q

〉)]
= IE

[
exp (i 〈u,Mt−s〉)

]
IE
[

exp (i 〈v,Mr−q〉)
]
,

which yields that M has stationary and independent increments.
(v) According to Corollary 6.7, there exist, at most, an a.s. countable number
of points in the support of the Poisson random measure µX . Moreover, since
Leb ⊗ ν has no atoms, we get that µX takes values in {0, 1} at singletons.
Hence, every discontinuity of M = (Mt)t≥0 corresponds to a single point in
the support of µX , which yields that M has an a.s. countable number of
jumps in every compact time interval. �

6.6. Proof of the Lévy–Itô decomposition. Now, we are ready to com-
plete the proof of the Lévy–Itô decomposition.

Proof of Theorem 6.1. Step 1. We first consider the processes X(1) and X(2)

with characteristic exponents

ψ(1)(u) = i 〈u, b〉 and ψ(2)(u) =
〈u, cu〉

2
, (6.30)

which correspond to a linear drift and a Brownian motion, i.e.

X
(1)
t = bt and X

(2)
t =

√
cWt, (6.31)

defined on some probability space (Ω\,F \, IP\).
Step 2. Given a Lévy measure ν, we know from Theorem 6.5 that there ex-

ists a probability space, denoted by (Ω],F ], IP]), such that we can construct
a Poisson random measure µX on (R>0×Rd,B(R>0)×B(Rd),Leb⊗ ν). Let

us define the process X(3) = (X
(3)
t )t≥0 with

X(3) =

t∫
0

∫
Dc

xµX(ds, dx). (6.32)

Using Lemma 6.10 we can deduce that X(3) is a compound Poisson process

with intensity λ := ν(Dc) and jump distribution F (dx) := ν(dx)
ν(Dc)1Dc(dx).

Step 3. Next, from the Lévy measure ν we construct a process having only
jumps less than 1. For each 0 < ε ≤ 1, define the compensated compound

Poisson process X(4,ε) = (X
(4,ε)
t )t≥0 with

X(4,ε) =

t∫
0

∫
ε<|x|≤1

xµX(ds, dx)− t
∫

ε<|x|≤1

xν(dx). (6.33)

Using Theorem 6.9 we know that X(4,ε) has the characteristic exponent

ψ(4,ε)(u) =

∫
ε<|x|≤1

(
ei〈u,x〉 − 1− i 〈u, x〉

)
ν(dx). (6.34)
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Now, according to Theorem 6.12 there exists a Lévy process, denoted by
X(4), which is a square integrable, pure jump martingale defined on the
space (Ω],F ], IP]), such that X(4,ε) converges to X(4) uniformly on [0, T ]
along an appropriate subsequence as ε ↓ 0. Obviously, the characteristic
exponent of the latter Lévy process is

ψ(4)(u) =

∫
|x|≤1

ei〈u,x〉 − 1− i 〈u, x〉
)
ν(dx). (6.35)

Since the sets {|x| > 1} and {|x| ≤ 1} are obviously disjoint, the processes

X(3) and X(4) are independent. Moreover, they are both independent of X(1)

and X(2), which are defined on a different probability space.
Step 4. In order to conclude the proof, we consider the product space

(Ω,F , IP) = (Ω\,F \, IP\)× (Ω],F ], IP]). (6.36)

The process X = (Xt)t≥0 with

Xt = X
(1)
t +X

(2)
t +X

(3)
t +X

(4)
t

= bt+
√
cWt +

t∫
0

∫
Dc

xµX(ds, dx) +

t∫
0

∫
D

x(µX − νX)(ds, dx), (6.37)

is defined on this space, has stationary and independent increments, càdlàg
paths, and the characteristic exponent is

ψ(u) = ψ(1)(u) + ψ(2)(u) + ψ(3)(u) + ψ(4)(u)

= i 〈u, b〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉 1D(x)

)
ν(dx).

�

Remark 6.13 (Truncation function). Assume that the infinitely divisible
distribution ρ has the Lévy triplet (bh, c, ν)h relative to the truncation func-
tion h, that is, assume that the Fourier transform of ρ is given by (5.5)–(5.6)
instead of (5.2). Then, the Lévy–Itô decomposition takes the form

Xt = bht+
√
cWt +

t∫
0

∫
Rd

hc(x)µX(ds, dx) +

t∫
0

∫
Rd

h(x)(µX − νX)(ds, dx),

(6.38)

where hc(x) = x− h(x). This form of the Lévy–Itô decomposition is consis-
tent with the choice of the truncation function h; see also Remark 5.10.

Example 6.14. Revisiting the Lévy jump-diffusion process, we can easily
see that (3.1) is the Lévy–Itô decomposition of this Lévy process for the
truncation function h(x) = x, while

Xt = b0t+ σWt +

Nt∑
k=1

Jk, (6.39)

where b0 = b− λβ is the Lévy–Itô decomposition of X relative to the trun-
cation function h(x) ≡ 0. See also Example 5.11.
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Exercise 12. Suppose X,Y are two independent Lévy processes (on the
same probability space). Show that X + Y and X − Y are again Lévy pro-
cesses. Can X−Y be a Lévy process in case X and Y are not independent?

Exercise 13. Consider the space (R>0×Rd,B(R>0)×B(Rd),Leb⊗ ν) and
denote by µX the Poisson random measure with intensity Leb ⊗ ν. Let f :
Rd → Rd such that

∫
Rd |f(x)|2ν(dx) <∞. Show that the process I = (It)t≥0

with

It =

t∫
0

∫
Rd

f(x)µX(ds, dx)− t
∫
Rd

f(x)ν(dx) (6.40)

is a square integrable martingale and prove the following simplified version
of the Itô isometry

IE
[
|It|2

]
= t

∫
Rd

|f(x)|2ν(dx). (6.41)

Exercise 14. Consider the setting of the previous exercise.
(i) Show that, for each n ≥ 2 and each t > 0,

t∫
0

∫
Rd

xnµX(ds, dx) <∞ a.s. ⇐⇒
∫
|x|>1

|x|nν(dx) <∞. (6.42)

(ii) Assuming that the previous condition holds, show that t∫
0

∫
Rd

xnµX(ds, dx)− t
∫
Rd

xnν(dx)


t≥0

(6.43)

is a martingale.

6.7. Another approach to the basic connections. We have now proved
the basic connections between Lévy processes, infinitely divisible distribu-
tions and Lévy triplets, as announced in §3.1. The line of these proofs is
diagrammatically represented in Figure 3.2. These relations are useful for
the construction of new classes of Lévy processes and for the simulation of
Lévy processes.

Naturally, there are other ways to prove these connections. Another ap-
proach is diagrammatically represented in Figure 6.4. The steps in these

(Xt)t≥0
SII //

LI %%KK
KK

KK
KK

K L(X1) = ρ
KET

oo

(b, c, ν)

LK

88qqqqqqqqqq

Figure 6.4. Another approach to the basic connections be-
tween Lévy processes, infinitely divisible distributions and
Lévy triplets.

proofs can be summarized as follows:
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(i) show that the law of Xt is infinitely divisible using the stationarity and
independence of the increments (cf. Lemma 4.18);

(ii) show that for every Lévy triplet (b, c, ν) that satisfies (5.2) the measure
ρ is infinitely divisible (cf. Theorem 5.3, “If” part);

(iii) use Kolmogorov’s extension theorem to show that for every infinitely
divisible distribution ρ, there exists a Lévy process X = (Xt)t≥0 such
that IPX1 = ρ;

(iv) prove the following version of the Lévy–Itô decomposition: every Lévy
process admits the path decomposition (6.2). A corollary of the last
result is the Lévy–Khintchine formula, cf. (5.27)-(5.29).

This line of proofs is based on the analysis of the jumps of Lévy process and
follows in spirit the analysis of the jumps of the compound Poisson process
in §6.2. We refer the interested reader to [App09] and [Pro04].

7. The Lévy measure and path properties

The Lévy measure is the most interesting part of a Lévy process and is
responsible for the richness of the class of these processes. The behaviour
of the sample paths of a Lévy process, as well as many other properties,
e.g. existence of moments, smoothness of densities, etc, can be completely
characterized based on the Lévy measure and the presence or absence of a
Brownian compenent.

Let us recall the definition of a Lévy measure: it is a measure on Rd that
satisfies

ν({0}) = 0 and

∫
R

(1 ∧ |x|2)ν(dx) <∞. (7.1)

The Lévy measures of certain examples of Lévy processes are presented in
Figures 7.5 and 7.6. Using the proporties of the Poisson random measure,
we can deduce that the Lévy measure satisfies

IE
[
µX([0, 1]×A)

]
= ν(A), (7.2)

for every set A ∈ B(Rd \ {0}). In other words, the Lévy measure describes
the expected number of jumps of a certain height in a time interval of length
one. The relation between Poisson random measures and Lévy measures
allows us to draw the following conclusion about the sample paths of Lévy
processes based on their Lévy measure: the Lévy measure has no mass at
the origin while singularities can occur around it, thus a Lévy process can
have an infinite number of small jumps — “small” here means bounded by
one in absolute value, although we can consider any ε > 0 instead of one.
Moreover, the mass away from the origin is bounded, hence only a finite
number of big jumps can occur — again, “big” here means greater than one
in absolute value.

7.1. Path properties. We would like to discuss some finer properties of
the paths of a Lévy process, in particular, when are the paths continuous or
piecewise constant and when they have finite or infinite variation. Through-
out this section we assume that X = (Xt)t≥0 is a Lévy process with triplet
(b, c, ν).



AN INTRODUCTION TO LÉVY PROCESSES 33
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Figure 7.5. The distribution function of the Lévy measure
of the standard Poisson process (left) and the density of the
Lévy measure of a compound Poisson process with double-
exponentially distributed jumps.
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Figure 7.6. The density of the Lévy measure of a normal
inverse Gaussian (NIG, left) and an α-stable process.

Proposition 7.1. The paths of X = (Xt)t≥0 are a.s. continuous if and only
if ν ≡ 0.

Exercise 15. Let X be a Lévy process with Lévy measure ν.

(i) Show that for a > 0

P
(

sup
0<s≤t

|Xs −Xs−| > a
)

= 1− e−tν(R\(−a,a)).

(ii) Use this to prove Proposition 7.1.

Proposition 7.2. The paths of X = (Xt)t≥0 are a.s. piecewise constant if
and only if X is a compound Poisson process without drift.

Exercise 16. Prove Proposition 7.2

Definition 7.3. A Lévy process X has infinite activity if the sample paths
of X have an a.s. countably infinite number of jumps on every compact time
interval [0, T ]. Otherwise, X has finite activity.

Proposition 7.4. (1) If ν(Rd) =∞ then X has infinite activity.
(2) If ν(Rd) <∞ then X has finite activity.

Exercise 17. Prove Proposition 7.4
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Figure 7.7. Simulated paths of a finite activity (left) and
an infinite activity subordinator.

Remark 7.5. By the definition of a Lévy measure, cf. Definition 5.1, we
get immediately the following equivalences:

ν(Rd) =∞ ⇐⇒ ν(D) =∞

ν(Rd) <∞ ⇐⇒ ν(D) <∞.
(7.3)

Remark 7.6. Intuitively speaking, a Lévy process with infinite activity will
jump more often than a process with finite activity. This is visually verified
by the simulated paths of a compound Poisson and an inverse Gaussian
subordinator presented in Figure 7.7.

Remark 7.7. The aforestated results allow us to deduce that if ν(D) <∞
and c = 0 then the Lévy process is actually a compound Poisson process.
Since the Lévy measure ν is finite, i.e. λ := ν(R) < ∞, we can define

F (dx) := ν(dx)
λ , which is a probability measure. Thus, λ will be the expected

number of jumps and F (dx) the distribution of the jump size.

7.2. Variation of the paths. Next, we want to analyze the variation of
the paths of a Lévy process. We will consider a real-valued Lévy process
for simplicity, although the main result, Proposition 7.11, is also valid for
Rd-valued Lévy processes.

Definition 7.8. Consider a function f : [a, b] → R. The total variation of
f over [a, b] is

TV(f) = sup
π

n∑
i=1

|f(ti)− f(ti−1)| (7.4)

where π = {a = t0 < t1 < · · · < tn = b} is a partition of the interval [a, b].

Lemma 7.9. If f : [a, b] → R is càdlàg and has finite variation on [a, b],
then

TV(f) ≥
∑
t∈[a,b]

|∆f(t)|. (7.5)

Proof. [App09, Theorem 2.3.14]. �
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Definition 7.10. A stochastic process X = (Xt)t≥0 has finite variation if
the paths (Xt(ω))t≥0 have finite variation for almost all ω ∈ Ω. Otherwise,
the process has infinite variation.

Proposition 7.11. A Lévy process X = (Xt)t≥0 with triplet (b, c, ν) has
finite variation if and only if

c = 0 and

∫
|x|≤1

|x|ν(dx) <∞. (7.6)

Proof. Assume that c = 0, then the Lévy–Itô decomposition of the Lévy
process takes the form

Xt = bt+

t∫
0

∫
|x|>1

xµX(ds, dx) +

t∫
0

∫
|x|≤1

x(µX − νX)(ds, dx)

︸ ︷︷ ︸
=X

(4)
t

. (7.7)

We know that the first and second processses have finite variation, hence we
will concentrate on the last part. Using the definition we have

TV
(
X

(4)
t

)
= sup

π

n∑
i=1

∣∣X(4)
ti
−X(4)

ti−1

∣∣
= sup

π

n∑
i=1

∣∣∣ ti∫
ti−1

∫
|x|≤1

x(µX − νX)(ds, dx)
∣∣∣

≤ sup
π

n∑
i=1

ti∫
ti−1

∫
|x|≤1

|x|(µX − νX)(ds, dx)

=

t∫
0

∫
|x|≤1

|x|(µX − νX)(ds, dx)

=

t∫
0

∫
|x|≤1

|x|µX(ds, dx)− t
∫
|x|≤1

|x|νX(dx) <∞ a.s., (7.8)

since condition (7.6) for the Lévy measure implies that the integral with
respect to the Poisson random measure µX in (7.8) is well defined and a.s.
finite; cf. Theorem 6.9. Hence, we can split the integral wrt to the compen-
sated random measure µX − νX in two a.s. finite parts.

Conversely, assume that X has finite variation; then, we can use estima-
tion (7.5), which yields

∞ > TV(Xt) ≥
∑

0≤s≤t
|∆Xs| ≥

∑
0≤s≤t

|∆Xs|1{|∆Xs|≤1} =

t∫
0

∫
|x|≤1

|x|µX(ds, dx).
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Figure 7.8. Simulated paths of two infinite variation Lévy
processes: Brownian motion (left) and NIG process.

Using again Theorem 6.9, finiteness of the RHS implies that

t∫
0

∫
|x|≤1

|x|νX(ds, dx) <∞ =⇒
∫
|x|≤1

|x|ν(dx) <∞, (7.9)

which yields the second condition. The Lévy–Itô decomposition of this Lévy
process—where the jumps have finite variation—takes the form

Xt = b′t+
√
cWt +

∑
s≤t

∆Xs. (7.10)

However, the paths of a Brownian motion have infinite variation, see e.g.
[RY99, Cor. I.2.5], hence X will have paths of finite variation if and only if
c = 0. �

The simulated sample paths of a continuous Lévy process with infinite
variation (i.e. Brownian motion) and a purely discontinuous one are de-
picted in Figure 7.8. We can observe that, locally, the pure-jump infinite
variation process behaves like a Brownian motion, as it proceeds by in-
finitesimally small movements. However, these small jumps are interlaced
with, less frequent, big jumps.

Remark 7.12. Assume that the jump part of the Lévy process X has finite
variation, i.e. it holds that ∫

|x|≤1

|x|ν(dx) <∞. (7.11)

Then, the Lévy–Itô decomposition of X takes the form

Xt = b0t+
√
cWt +

t∫
0

∫
Rd

xµX(ds, dx), (7.12)

and the Lévy–Khintchine formula can be written as

IE
[
ei〈u,X1〉] = exp

i 〈u, b0〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1

)
ν(dx)

 . (7.13)
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In other words, we can use the truncation function h(x) = 0 and the drift
term relative to this truncation function (denoted by b0) is related to the
drift term b in (5.2) via

b0 = b−
∫
|x|≤1

xν(dx). (7.14)

Note that this process is not necessarily a compound Poisson process, as the
activity of the process might be infinite (i.e. ν(D) =∞).

7.3. Subordinators. The last part of this section will be devoted to Lévy
processes which have a.s. increasing paths. These processes are typically
called subordinators. Subordinators play an important role in the theory and
also in the applications of Lévy processes in various fields, as they constitute
a stochastic model for the evolution of time. We start by characterizing the
Lévy triplet of a subordinator. We will concentrate on real-valued subordi-
nators, for simplicity; for multivariate subordinators we refer the reader to
[BNPS01].

Proposition 7.13. Let X = (Xt)t≥0 be a real-valued Lévy process with
triplet (b, c, ν). The following are equivalent:

(1) Xt ≥ 0 a.s. for some t > 0;
(2) Xt ≥ 0 a.s. for all t > 0;
(3) The sample paths of X are a.s. non-decreasing, that is

t ≥ s =⇒ Xt ≥ Xs;

(4) The triplet (b, c, ν) satisfies:
∫ 1

0 xν(dx) < ∞, c = 0, ν(−∞, 0]) = 0

and b ≥
∫ 1

0 xν(dx). In other words, no diffusion component, jumps
are only positive and have finite variation and the drift dominates
the compensator of the small jumps.

Proof. The statements (3) ⇒ (2) (take s = 0 in (3)) and (2) → (1) are
obvious.
(1)⇒ (2) Without loss of generality we may assume that X1 ≥ 0 a.s. Since
X1 is the sum of n independent copies of X1/n it follows that X1/n ≥ 0 a.s.
Similarly, it follows that Xk ≥ 0 a.s. for any k ∈ N. Combining these two
observations leads to Xq ≥ 0 a.s. for any rational q > 0. Statement (2) now
follows from the right-continuity of paths of a Lévy process.

(2)⇒ (3) Since Xt−Xs
d
= Xt−s it follows from (2) that Xt−Xs ≥ 0 a.s.

(3)⇒ (4) Suppose that X is a Lévy process with triplet (b, c, ν) satisfying

c = 0, ν(−∞, 0) = 0,

∫
0<x<1

xν(dx) <∞ and b ≥
∫

0<x<1

xν(dx).

This means that we can write

Xt =

b− ∫
0<x<1

xν(dx)

 t+

∫
[0,t]

∫
(0,∞)

xN(ds, dx),

where N is the Poisson random measure corresponding to the jumps of the
Lévy process (no compensation needed here since X is of finite variation).
This is clearly an increasing process.
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(4)⇒ (3) Conversely, if X has increasing paths, then it is of finite varia-
tion implying that c = 0 and

∫
|x|<1 |x|ν(dx) <∞. We can write

Xt =

b− ∫
0<x<1

xν(dx)

 t+

∫
[0,t]

∫
R

xN(ds, dx).

For this to be an increasing process it must hold that b ≥
∫

0<x<1 xΠ(dx)
and Π(−∞, 0) = 0.

�

Corollary 7.14. The Lévy–Itô decomposition of a subordinator is

Xt = bt+

t∫
0

∫
R+

xµX(ds, dx), (7.15)

while the Lévy–Khintchine representation takes the form

IE
[
eiuX1

]
= exp

(
iub+

∫
R+

(eiux − 1)ν(dx)

)
. (7.16)

Remark 7.15. Consider a Lévy process X with triplet (b, c, ν) such that
the following proporties holds:

b ≥ 0, c = 0, ν((−∞, 0]) = 0 and

∫
(0,1]
|x|ν(dx) =∞.

This process has the Lévy–Itô decomposition

Xt = bt+

t∫
0

∫
R+

x(µX − νX)(ds, dx), (7.17)

its paths are fluctuating but are not increasing—the paths have infinite
variation—and this process is not a subordinator. The intuitive explanation
for this bahavior is that the jump part will converge only if we add an “in-
finitely strong” deterministic term in the negative direction to compensate
for the divergent sum of jumps. This term cannot be negated, however large
we choose b.

Exercise 18. Let X be an Rd-valued Lévy process and consider a function
f : Rd → R+ such that f(x) = O(|x|2) as |x| → 0. Show that the process
S = (St)t≥0 defined by

St =
∑

0≤s≤t
f(∆Xs) (7.18)

is a subordinator.

8. Elementary operations

In this section, we will study the result of certain elementary operations
when applied to Lévy processes. The operations we have in mind are lin-
ear transformations, projections and subordination. The resulting processes
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belong to the class of Lévy processes again, and we will see that these oper-
ations can be expressed as simple transformations of the Lévy triplet or the
Lévy exponent.

8.1. Linear transformations and projections. A very simple transfor-
mation of a Lévy process is to restrict and project it into a subspace of
its state space, or to apply a linear transformation to it. The following re-
sult provides a complete characterization of linear transformations of Lévy
processes in terms of their Lévy triplet.

Proposition 8.1. Let X = (Xt)t≥0 be an Rd-valued Lévy process with triplet
(b, c, ν)h. Let U be an n × d matrix with real entries (U ∈ Mnd(R)). Then,
XU = (XU

t )t≥0 with XU
t := UXt is an Rn-valued Lévy process with Lévy

triplet (bU , cU , νU )h′, where

bU = Ub+

∫
Rd

(h′(Ux)− Uh(x))ν(dx) (8.1a)

cU = UcU> (8.1b)

νU (E) = ν({x ∈ Rd : Ux ∈ E}), E ∈ B(Rn\{0}). (8.1c)

Here h′(x) denotes a truncation function on Rn.

Remark 8.2. The Lévy measure νU in (8.1c) is the push-forward of the
measure ν by the operator U , also denoted U∗ν. We have that, for suitable
functions f and E ∈ B(Rn\{0}), it holds∫

E

f(y)νU (dy) =

∫
Rd

1E(Ux)f(Ux)ν(dx).

Proof. Since U defines a linear mapping from Rd to Rn, it is clear that XU

has independent and stationary increments, and is stochastically continuous;
moreover, XU

0 = 0 a.s. In other words, XU is an Rn-valued Lévy process.
We will show that νU is a Lévy measure and the integral on the RHS of

bU is finite; hence, the triplet (bU , cU , νU ) in (8.1a) is indeed a Lévy triplet.
Then we will derive the characteristic function of XU

t .
Clearly νU has no mass at the origin; in addition we have that∫

Rn

(|y|2 ∧ 1)νU (dy) =

∫
Rd

(|Ux|2 ∧ 1)ν(dx)

≤ (‖U‖2 ∨ 1)

∫
Rd

(|x|2 ∧ 1)ν(dx) <∞,

because the induced norm satisfies |Ux| ≤ ‖U‖|x| for all U ∈ Mnd(R) and
x ∈ Rd.

Next, we restrict ourselves to the canonical truncation function for sim-
plicity, i.e. h(x) = x1{|x|≤1}, and derive the following result for the integral
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on the RHS of bU :∫
Rd

|h′(Ux)− Uh(x)|ν(dx)

≤
∫
Rd

|Ux||1{|Ux|≤1}−1{|x|≤1}|ν(dx)

=

∫
Rd

|Ux||1{|Ux|≤1<|x|} − 1{|x|≤1<|Ux|}|ν(dx)

≤
∫

{|Ux|≤1<|x|}

|Ux|ν(dx) +

∫
{|x|≤1<|Ux|}

|Ux|ν(dx)

≤
∫

{|x|>1}

ν(dx) + ‖U‖
∫

{|x|≤1<‖U‖|x|}

|x|ν(dx)

≤
∫

{|x|>1}

ν(dx) + ‖U‖2
∫

{ 1
‖U‖<|x|≤1}

|x|2ν(dx) <∞.

Finally, regarding the characteristic function we have for any z ∈ Rn

IE
[
ei〈z,X

U
1 〉
]

= IE
[
ei〈z,UX1〉

]
= IE

[
ei〈U

>z,X1〉
]

= exp

(
i〈U>z, b〉 − 1

2
〈U>z, cU>z〉

+

∫
Rd

(ei〈U
>z,x〉 − 1− i〈U>z, h(x)〉)ν(dx)

)

= exp

(
i〈z, Ub〉 − 1

2
〈z, UcU>z〉

+

∫
Rd

(ei〈z,Ux〉 − 1− i〈z, Uh(x)〉)ν(dx)

)

= exp

(
i〈z, bU 〉 − 1

2
〈z, cUz〉

+

∫
Rn

(ei〈z,y〉 − 1− i〈z, h′(y)〉)νU (dy)

)
,

where bU is given by (8.1a). Thus, (bU , cU , νU ) is indeed the triplet of the
Lévy process XU . �

8.2. Subordination. Subordinators are Lévy processes with a.s. non-decreasing
paths; see . . . for a complete characterization. Subordinators can be thought
of a stochastic model for the evolution of time. Subordination is the tranfor-
mation of one stochastic process to a new one through a random time-change
by an indepedent subordinator. This idea was introduced by Bochner. Note
that one can also subordinate a semigroup of linear operators to create a
new semigroup.
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In mathematical finance, subordination plays a prominent role. Many
popular Lévy modes can be constructed by subordinating Brownian motion,
e.g. VG and NIG. In that setting, one often speaks about “calendar” time
and “business” time. Subordination is also used to create multidimensional
models with dependence structure via a common time-change.

Let Y = (Yt)t≥0 be a suborinator, i.e. a Lévy process with a.s. increasing
paths. Let ψY denote the characteristic exponent of Y ; using . . . we know
that it has the form

ψY (u) = ibY u+

∫
(0,∞)

(eiux − 1)νY (dy). (8.2)

Note that IE[euYt ] <∞ for all u ≤ 0 since Y takes only non-negative values;
therefore,

∫
x>1 euyνY (dy) < ∞ for all u ≤ 0. Therefore, the characteristic

exponent of Y can be extended to an analytic function for u ≤ 0, and the
moment generating function of Yt is

IE[e〈u,Yt〉] = etφY (u) (8.3)

where

φY (u) = bY u+

∫
(0,∞)

(eux − 1)νY (dy). (8.4)

Theorem 8.3. Let X be an Rd-valued Lévy process with characteristic ex-
ponent ψX . Let Y be a subordinator with cumulant generating function φY ,
where Y is independent of X. Define the process Z = (Zt)t≥0 for each ω ∈ Ω
via

Zt(ω) = XYt(ω)(ω). (8.5)

Then, Z is a Lévy process with characteristic exponent

ψZ(u) = φY (ψX(u)). (8.6)

Proof. . . . �

Exercise 19. Show that any Lévy process with finite variation can be writ-
ten as the difference of two independent subordinators.

9. Moments and Martingales

In this section, we turn out attention to the finiteness of the moments
of Lévy processses. As motivation, we consider the Brownian motion and
the compound Poisson process. Let B denote a Brownian motion with drift
b and variance

√
c; then it is well known that the moments of Bt, for any

order, are finite and the moment generating function has the form

MBt(u) = IE
[
e〈u,Bt〉

]
= exp

(
t
(
〈u, b〉+

〈u, cu〉
2

))
, (9.1)

for any t ≥ 0 and any u ∈ Rd.
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On the other hand, consider a compound Poisson process X with jump
intensity λt, 0 ≤ λ <∞, and jump distribution F , i.e.

Xt =

Nt∑
k=1

Jk.

We know from Example . . . that

IE[Xt] = λtIE[Jk].

Thus, Xt does not have a finite moment if IE[Jk] =∞. It turns out that the
finiteness of the moments of a Lévy process is closely related to the finiteness
of an integral over the Lévy measure of the process, and in particular over
the big jumps (i.e. |x| > 1).

Theorem 9.1. Let X be an R-valued Lévy process with triplet (b, c, ν) and
u ∈ R. Then, for any t ≥ 0

IE
[
euXt

]
<∞ if and only if

∫
|x|>1

euxν(dx). (9.2)

Proof. “Only If” part. Assume that IE[euXt ] < ∞ for some t > 0. Recall
that the Lévy–Itô decomposition of a Lévy process X is

Xt = X
(1)
t +X

(2)
t +X

(3)
t +X

(4)
t , (9.3)

where X(3) is a compound Poisson process with arrival rate λ := ν(Dc) and

jump distribution F (dx) := ν(dx)
ν(Dc)1{|x|≥1}. Now, using the independence of

X(1), . . . , X(4) we have that

∞ > IE
[
euXt

]
= IE

[
eu(X

(1)
t +X

(2)
t +X

(4)
t )
]
× IE

[
euX

(3)
t
]
; (9.4)

thus, by the assumption we get that

IE
[
euX

(3)
t
]
<∞. (9.5)

Since X(3) is a compound Poisson process we know (see Example . . . ) that

IE[euX
(3)
t ] = e−λt

∑
k≥0

(λt)k

k!

∫
R

euxF (dx)

k

= e−λt
∑
k≥0

tk

k!

∫
R

eux1{|x|≥1}
ν(dx)

ν(Dc)

k

.

All the summands must be finite, hence the one corresponding to k = 1
must also be finite, and we can conclude

e−λt
λt

ν(Dc)

∫
R

eux1{|x|≥1}ν(dx) <∞ =⇒
∫
|x|≥1

euxν(dx) <∞.
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“If” part. Conversely, assume that
∫
|x|≥1 euxν(dx) < ∞ for some u ∈ R.

Since (ν|Dc)∗n is a finite measure, we have that∫
R

eux(ν|Dc)∗n(dx) =
( ∫
|x|≥1

euxν(dx)
)n

<∞, (9.6)

therefore,

IE[euX
(3)
t ] = e−λt

∑
k≥0

tk

k!

∫
R

eux1{|x|≥1}
ν(dx)

ν(Dc)

k

<∞

for all t > 0. In order to complete the proof, we have to show that

IE
[
eu(X

(1)
t +X

(2)
t +X

(4)
t )
]
<∞ (9.7)

for all t > 0. Note thatX(1)+X(2)+X(4) is a Lévy process with characteristic
exponent

ψ′(u) = iub− u2c

2
+

∫
|x|≤1

(
eiux − 1− iux

)
ν(dx). (9.8)

The first and second summands clearly admit an analytic expression to the
complex plane. Regarding the integral term, we have that∫

|x|≤1

(
eiux − 1− iux

)
ν(dx) =

∫
|x|≤1

(∑
k≥0

(iux)k+2

(k + 2)!

)
ν(dx), (9.9)

and we can exchange the sum and the integral using Fubini’s theorem and
the estimation∑

k≥0

∫
|x|≤1

|ux|k+2

(k + 2)!
ν(dx) ≤

∑
k≥0

|u|k+2

(k + 2)!

∫
|x|≤1

|x|2ν(dx) <∞, (9.10)

since the Lévy measure has bounded support, namely in {|x| ≤ 1}.
Therefore, ψ′ can be extended to an analytic function to the whole com-

plex plane C and eq. (9.7) holds true. �

Corollary 9.2. Let ρ be an infinitely divisible distribution on R whose Lévy
measure has bounded support. Then, ρ̂ can be extended to an entire function
on C.

9.1. Submultiplicative functions. The previous theorem actually holds
for a broader class of functions than just the exponential; these functions are
called submultiplicative functions, and we will briefly describe them here.

Definition 9.3. A function f : Rd → R>0 is called submultiplicative if there
exists a constant c > 0 such that for all x, y ∈ Rd

f(x+ y) ≤ cf(x)f(y). (9.11)

Definition 9.4. A function is called locally bounded if it is bounded on
every compact set.

Proposition 9.5. (1) Let f, g be submultiplicative functions then fg is
also submultiplicative.
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(2) If f is a submultiplicative function then so is f(βx + γ)α, where
α > 0, β ∈ R and γ ∈ Rd.

Proof. Direct consequences of the definition. �

Example 9.6. The following are some characteristic examples of submul-
tiplicative functions:

|x| ∨ 1, |xi| ∨ 1, xi ∨ 1

exp(|x|β), exp(|xi|β), exp((xi ∨ 0)β)

log(|x| ∨ e), log(|xi| ∨ e), log(xi ∨ e),

where β ∈ (0, 1], x ∈ Rd and xi denotes the i-th component of x.

9.2. f-Moments. We will call the expectation of Xt with respect to a suit-
able function f an f -moment.

Theorem 9.7. Let X be an Rd-valued Lévy process with triplet (b, c, ν). Let
f be a submultiplicative, locally bounded, measurable function on Rd. Then,
for any t ≥ 0

IE
[
f(Xt)

]
<∞ if and only if

∫
|x|>1

f(x)ν(dx) <∞. (9.12)

Proof. [Sat99, Theorem 25.3]. �

Actually, the proof of this Theorem follows along the same lines as the
proof of Theorem . . . making also use of the following result on submulti-
plicative functions.

Lemma 9.8. Let f be a submultiplicative and locally bounded function. Then

f(x) ≤ bea|x|, (9.13)

for some constants a, b > 0.

Proof. Since f is bounded on compact sets, we can choose b such that

sup
|x|≤1

f(x) ≤ b, (9.14)

and further bc > 1 (where c is the constant from the submultiplicative
property). Using that f is submultiplicative we get

f(x) = f
( n∑
i=1

x

n

)
≤ cn−1f

(x
n

)n
. (9.15)

If we choose n such that n− 1 < |x| ≤ n, then we have

f(x) ≤ cn−1g
(x
n

)n
≤ cn−1bn = b(bc)n−1

≤ b(bc)|x| = bea|x|. �

Remark 9.9. In case the Lévy process X has finite first moment, i.e.∫
|x|>1

|x|ν(dx) <∞, (9.16)
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then the Lévy–Itô decomposition of X takes the form

Lt = b1t+
√
cWt +

t∫
0

∫
Rd

x(µX − νX)(ds, dx), (9.17)

and the Lévy–Khintchine formula can be written as

IE
[
ei〈u,X1〉] = exp

i 〈u, b1〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉

)
ν(dx)

 .

(9.18)

In other words, we can use the truncation function h(x) = x and the drift
term relative to this truncation function (denoted by b1) is related to the
drift term b in . . . via

b1 = b+

∫
|x|>1

xν(dx). (9.19)

9.3. Moment generating function. Finally, we are interested in the do-
main of definition and the form of the characteristic function of a Lévy
process. The next result provides the answer.

Theorem 9.10. Let X = (Xt)t≥0 be an Rd-valued Lévy process with Lévy
triplet (b, c, ν) and characteristic exponent ψ. Let

U =

{
u ∈ Rd :

∫
{|x|>1}

e〈u,x〉ν(dx) <∞
}
. (9.20)

(i) The set U is convex and contains the origin.

(ii) u ∈ U if and only if IE[e〈u,Xt〉] <∞ for some (and hence all) t ≥ 0.
(iii) If u ∈ Cd such that <u ∈ U , then

φ(u) = 〈u, b〉+
〈u, cu〉

2
+

∫
Rd

(
e〈u,x〉 − 1− 〈u, h(x)〉

)
ν(dx) (9.21)

is well-defined, IE|e〈u,Xt〉| <∞, and the moment generating function is

IE[e〈u,Xt〉] = etφ(u) = etψ(iu). (9.22)

Proof. [Sat99, Theorem 25.17]. �

We close this section on moments of Lévy processes with a result con-
cerning the f -moments of the supremum of a Lévy process.

Theorem 9.11. Let X be an Rd-valued Lévy process. Define

X∗t = sup
0≤s≤t

|Xs|. (9.23)

Let f : Rd → [0,∞) be a continuous submultiplicative function, increasing
to ∞ as x→∞. The following are equivalent:

(1) IE[f(X∗t )] <∞ for all t > 0,
(2) IE[f(|Xt|)] <∞ for all t > 0.

Proof. [Sat99, Theorem 25.18]. �
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9.4. Martingales and Lévy processes. We are interested in constructing
martingales that are driven by Lévy processes.

Proposition 9.12. Let X be an Rd-valued Lévy process with Lévy triplet
(b, c, ν), characteristic exponent ψ and cumulant generating function φ.

(1) If
∫
|x|>1 |x|ν(dx) <∞, then X is a martingale if and only if

b+

∫
|x|>1

xν(dx) = 0.

(2) If
∫
|x|>1 |x|ν(dx) <∞, then (Xt − IE[Xt])t≥0 is a martingale.

(3) If
∫
|x|>1 e〈u,x〉ν(dx) < ∞ for some u ∈ Rd, then M = (Mt)t≥0 is a

martingale, where

Mt =
e〈u,Xt〉

etφ(u)
. (9.24)

(4) The process N = (Nt)t≥0 is a complex-valued martingale, where

Nt =
ei〈u,Xt〉

etψ(u)
. (9.25)

Proof. . . . �

We can also construct martingales using the conditional expectation; this
recipe is, of course, not restricted to Lévy processes

Proposition 9.13. Let Y be an integrable and measurable random variable.
Then, L = (Lt)t≥0 is a martingale, where

Lt = IE[Y |Ft]. (9.26)

Proof. . . . �

10. Popular examples

In this section, we review some popular models in the mathematical fi-
nance literature from the point of view of real-valued Lévy processes. We
describe their Lévy triplets and characteristic functions and provide, when-
ever possible, their – infinitely divisible – laws.

10.1. Black–Scholes. The most famous asset price model based on a Lévy
process is that of [Sam65], [BS73] and Merton [Mer73]. The log-returns are
normally distributed with mean µ and variance σ2, i.e. L1 ∼ Normal(µ, σ2)
and the density is

fL1(x) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
.

The characteristic function is

ϕL1(u) = exp
[
iµu− σ2u2

2

]
,

the first and second moments are

E[L1] = µ, Var[L1] = σ2,



AN INTRODUCTION TO LÉVY PROCESSES 47

while the skewness and kurtosis are

skew[L1] = 0, kurt[L1] = 3.

The canonical decomposition of L is

Lt = µt+ σWt

and the Lévy triplet is (µ, σ2, 0).

10.2. Merton. [Mer76] was one of the first to use a discontinuous price
process to model asset returns. The canonical decomposition of the driving
process is

Lt = µt+ σWt +

Nt∑
k=1

Jk

where Jk ∼ Normal(µJ , σ
2
J), k = 1, ..., hence the distribution of the jump

size has density

fJ(x) =
1

σJ
√

2π
exp

[
− (x− µJ)2

2σ2
J

]
.

The characteristic function of L1 is

ϕL1(u) = exp
[
iµu− σ2u2

2
+ λ

(
eiµJu−σ

2
Ju

2/2 − 1
)]
,

and the Lévy triplet is (µ, σ2, λ× fJ).
The density of L1 is not known in closed form, while the first two moments

are

E[L1] = µ+ λµJ and Var[L1] = σ2 + λµ2
J + λσ2

J

10.3. Kou. [Kou02] proposed a jump-diffusion model similar to Merton’s,
where the jump size is double-exponentially distributed. Therefore, the canon-
ical decomposition of the driving process is

Lt = µt+ σWt +

Nt∑
k=1

Jk

where Jk ∼ DbExpo(p, θ1, θ2), k = 1, ..., hence the distribution of the jump
size has density

fJ(x) = pθ1e−θ1x1{x<0} + (1− p)θ2eθ2x1{x>0}.

The characteristic function of L1 is

ϕL1(u) = exp
[
iµu− σ2u2

2
+ λ

( pθ1

θ1 − iu
− (1− p)θ2

θ2 + iu
− 1
)]
,

and the Lévy triplet is (µ, σ2, λ× fJ).
The density of L1 is not known in closed form, while the first two moments

are

E[L1] = µ+
λp

θ1
− λ(1− p)

θ2
and Var[L1] = σ2 +

λp

θ2
1

+
λ(1− p)

θ2
2

.
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10.4. Generalized Hyperbolic. The generalized hyperbolic model was in-
troduced by [EP02] following the seminal work on the hyperbolic model
by [EK95]. The class of hyperbolic distributions was invented by O. E.
Barndorff-Nielsen in relation to the so-called ‘sand project’ (cf. [BN77]).
The increments of time length 1 follow a generalized hyperbolic distribution
with parameters α, β, δ, µ, λ, i.e. L1 ∼ GH(α, β, δ, µ, λ) and the density is

fGH(x) = c(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ− 1
2

)/2

×Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
exp

(
β(x− µ)

)
,

where

c(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ−

1
2Kλ

(
δ
√
α2 − β2

)
and Kλ denotes the Bessel function of the third kind with index λ (cf.
[AS68]). Parameter α > 0 determines the shape, 0 ≤ |β| < α determines
the skewness, µ ∈ R the location and δ > 0 is a scaling parameter. The last
parameter, λ ∈ R affects the heaviness of the tails and allows us to navigate
through different subclasses. For example, for λ = 1 we get the hyperbolic
distribution and for λ = −1

2 we get the normal inverse Gaussian (NIG).
The characteristic function of the GH distribution is

ϕGH(u) = eiuµ
( α2 − β2

α2 − (β + iu)2

)λ
2 Kλ

(
δ
√
α2 − (β + iu)2

)
Kλ

(
δ
√
α2 − β2

) ,

while the first and second moments are

E[L1] = µ+
βδ2

ζ

Kλ+1(ζ)

Kλ(ζ)

and

Var[L1] =
δ2

ζ

Kλ+1(ζ)

Kλ(ζ)
+
β2δ4

ζ2

(Kλ+2(ζ)

Kλ(ζ)
−
K2
λ+1(ζ)

K2
λ(ζ)

)
,

where ζ = δ
√
α2 − β2.

The canonical decomposition of a Lévy process driven by a generalized
hyperbolic distribution (i.e. L1 ∼ GH) is

Lt = tE[L1] +

t∫
0

∫
R

x(µL − νGH)((ds, dx))

and the Lévy triplet is (E[L1], 0, νGH). The Lévy measure of the GH distri-
bution has the following form

νGH(dx) =
eβx

|x|

 ∞∫
0

exp(−
√

2y + α2 |x|)
π2y(J2

|λ|(δ
√

2y ) + Y 2
|λ|(δ
√

2y ))
dy + λe−α|x|1{λ≥0}

 ;

here Jλ and Yλ denote the Bessel functions of the first and second kind with
index λ. We refer to [Rai00, section 2.4.1] for a fine analysis of this Lévy
measure.

The GH distribution contains as special or limiting cases several known
distributions, including the normal, exponential, gamma, variance gamma,
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hyperbolic and normal inverse Gaussian distributions; we refer to Eberlein
and v. Hammerstein [EvH04] for an exhaustive survey.

10.5. Normal Inverse Gaussian. The normal inverse Gaussian distribu-
tion is a special case of the GH for λ = −1

2 ; it was introduced to finance in
[BN97]. The density is

fNIG(x) =
α

π
exp

(
δ
√
α2 − β2 + β(x− µ)

)K1

(
αδ
√

1 + (x−µδ )2
)

√
1 + (x−µδ )2

,

while the characteristic function has the simplified form

ϕNIG(u) = eiuµ
exp(δ

√
α2 − β2)

exp(δ
√
α2 − (β + iu)2)

.

The first and second moments of the NIG distribution are

E[L1] = µ+
βδ√
α2 − β2

and Var[L1] =
δ√

α2 − β2
+

β2δ

(
√
α2 − β2)3

,

and similarly to the GH, the canonical decomposition is

Lt = tE[L1] +

t∫
0

∫
R

x(µL − νNIG)((ds, dx)),

where now the Lévy measure has the simplified form

νNIG(dx) = eβx
δα

π|x|
K1(α|x|)dx.

The NIG is the only subclass of the GH that is closed under convolution,
i.e. if X ∼ NIG(α, β, δ1, µ1) and Y ∼ NIG(α, β, δ2, µ2) and X is independent
of Y , then

X + Y ∼ NIG(α, β, δ1 + δ2, µ1 + µ2).

Therefore, if we estimate the returns distribution at some time scale, then
we know it – in closed form – for all time scales.

10.6. CGMY. The CGMY Lévy process was introduced by Carr, Geman,
Madan, and Yor [CGMY02]; another name for this process is (generalized)
tempered stable process (see e.g. [CT04]). The characteristic function of Lt,
t ∈ [0, T ] is

ϕLt(u) = exp
(
tCΓ(−Y )

[
(M − iu)Y + (G+ iu)Y −MY −GY

])
.

The Lévy measure of this process admits the representation

νCGMY (dx) = C
e−Mx

x1+Y
1{x>0}dx+ C

eGx

|x|1+Y
1{x<0}dx,

where C > 0, G > 0, M > 0, and Y < 2. The CGMY process is a pure jump
Lévy process with canonical decomposition

Lt = tE[L1] +

t∫
0

∫
R

x(µL − νCGMY )((ds, dx)),
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and Lévy triplet (E[L1], 0, νCGMY ), while the density is not known in closed
form.

The CGMY processes are closely related to stable processes; in fact, the
Lévy measure of the CGMY process coincides with the Lévy measure of the
stable process with index α ∈ (0, 2) (cf. [ST94, Def. 1.1.6]), but with the ad-
ditional exponential factors; hence the name tempered stable processes. Due
to the exponential tempering of the Lévy measure, the CGMY distribution
has finite moments of all orders. Again, the class of CGMY distributions
contains several other distributions as subclasses, for example the variance
gamma distribution (Madan and Seneta [MS90]) and the bilateral gamma
distribution (Küchler and Tappe [KT08]).

10.7. Meixner. The Meixner process was introduced by Schoutens and
Teugels [ST98], see also [Sch02]. Let L = (Lt)0≤t≤T be a Meixner process
with Law(H1|P ) = Meixner(α, β, δ), α > 0, −π < β < π, δ > 0, then the
density is

fMeixner(x) =

(
2 cos β2

)2δ

2απΓ(2δ)
exp

(
βx

α

) ∣∣∣∣Γ(δ +
ix

α

)∣∣∣∣2 .
The characteristic function Lt, t ∈ [0, T ] is

ϕLt(u) =

(
cos β2

cosh αu−iβ
2

)2δt

,

and the Lévy measure of the Meixner process admits the representation

νMeixner(dx) =
δ exp

(
β
αx
)

x sinh(πxα )
.

The Meixner process is a pure jump Lévy process with canonical decompo-
sition

Lt = tE[L1] +

t∫
0

∫
R

x(µL − νMeixner)((ds, dx)),

and Lévy triplet (E[L1], 0, νMeixner).

10.8. Spectrally negative. A spectrally negative Lévy process has no pos-
itive jumps and is not the negative of a subordinator. The lack of positive
jumps implies the existence of

Proposition 10.1. Let X be a spectrally negative Lévy process with Lévy
triplet (b, c, ν). Then IE[eXt ] <∞ for any t ≥ 0 and

φ(λ) := log
(
IE
[
eX1
])

= bλ+
c

2
λ2 +

∫
(−∞,0)

(eλx − 1− λx1{x>−1})ν(dx).

The function φ is convex, infinitely often differentiable on (0,∞) with φ(0) =
0 and φ(∞) =∞.
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Proof. Since X has no positive jumps, ν((0,∞)) = 0 and thus for any λ ≥ 0∫
{|x|>1}

eλxν(dx) =

∫
{x>−1}

eλxν(dx) ≤ ν((−∞,−1)) <∞.

From Theorem 9.1 it then follows that IE[eλXt ] < ∞ for all t ≥ 0. This im-
plies that the characteristic exponent ψ(λ) of X can be extended to complex
λ with negative imaginary part, hence the Laplace exponent of X exists and
is given by

φ(λ) := log
(
IE
[
eX1
])

= ψ(−iλ) = bλ+
c

2
λ2+

∫
(−∞,0)

(eλx−1−λx1{x>−1})ν(dx).

Since for any n ∈ N the function x → xneλx is smaller than 1 on (−∞, 0)
for some C < 0 if follows that φ is infinitely often differentiable on (0,∞)
and that

φ′′(λ) = c+ λ2

∫
(−∞,0)

eλxν(dx) > 0.

From the assumption that X does not have monotone paths it follows that
IP(X1 > 0) > 0 which implies that IE

[
eλX1

]
→ ∞ as λ → ∞. Finally,

φ(0) = 0 is follows by definition. �

The lack of positive jumps allows us to deduce the following interesting
characterization of the first passage times over x > 0

τ+
x = inf{t ≥ 0 : Xt > x}

which is a stopping time due to our regularity assumptions on the filtration.
Note that

{τ+
x ≤ t} = { sup

0≤s≤t
Xs > x}.

Theorem 10.2. Let X be a spectrally negative Lévy process with Laplace
exponent φ and denote by Φ the right inverse of φ, i.e. for q ≥ 0

Φ(q) = sup{λ : φ(λ) = q}.
Then τ+

x is a (possibly killed) subordinator with

IE[e−qτ
+
x ] = e−Φ(q)x

for q > 0. In particular, IP(τ+
x <∞) = e−Φ(0)x.

Proof. Due to the càdlàg paths of X the process x → τ+
x also has càdlàg

paths. A spectrally negative Lévy process is strictly positive immediately
(this is obvious when X has paths of infinite variation; in the case of fi-
nite variation X must also be strictly positive immediately since otherwise
X would have decreasing paths which we ruled out by definition, see also
Proposition ??). This implies that τ+

0 = 0. Next, consider an increment
τ+
x+y − τ+

x for some y, x > 0. On the event {τ+
x <∞} we apply Theorem ??

with τ = τ+
x and deduce that X̃t = Xτ+x +t − Xτ+x

is again a Lévy process

with the same law as X on {τx+ < ∞}. As X has no negative jumps, it
follows that Xτ+x

= x on {τx+ <∞}. We find that

τ+
x+y = inf{t > 0 : Xt > x+ y} = inf{t > 0 : X̃t > y}+ τ+

x
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from which the independence and stationarity of increments follows. The fact
that the paths of τ+

x are non-increasing is obvious. The event {τ+
x = ∞}

occurs with positive probability whenever X drifts to −∞, in which case τ+
x

is a subordinator killed at rate IP(τ+
x =∞) for which we find an expression

below.
To calculate the Laplace exponent of τ+

x we use the martingale from part
(3) of Proposition ??, i.e. eλXt−φ(λ)t for some λ ≥ 0. It immediately follows
that

IE[eλXt−φ(λ)t] = 1

and hence, for any stopping time τ

IE[eλXt∧τ−φ(λ)(t∧τ)] = 1.

For τ = τ+
x it follows that Xt∧τ+x ≤ x and Xτ+x =x on {τ+

x < ∞}. An
application of dominated convergence theorem yields for λ > 0

1 = lim
t→∞

IE[e
λX

t∧τ+x
−φ(λ)(t∧τ+x )

] = eλxIE[e−φ(λ)τ+x 1{τ+x <∞}].

The properties of φ derived in Proposition 10.1 imply that for any q > 0 the
equation φ(λ) = q has a unique on (0,∞) which we denote by Φ(q). The
equation φ(λ) = 0 with λ ∈ [0,∞) has one solution λ = 0 and a second one
in case φ′(0+) < 0. Denote by Φ(0) the largest solution of this equation.
Then we find that for any q ≥ 0

IE[e−qτ
+
x 1{τ+x <∞}] = e−Φ(q)x

and thus IP(τ+
x <∞) = e−Φ(0)x showing that τ+

x is a subordinator killed at
rate Φ(0). �

11. Simulation of Lévy processes

We shall briefly describe simulation methods for Lévy processes. Our at-
tention is focused on finite activity Lévy processes (i.e. Lévy jump-diffusions)
and some special cases of infinite activity Lévy processes, namely the normal
inverse Gaussian and the variance gamma processes.

Here, we do not discuss simulation methods for random variables with
known density; various algorithms can be found at

http://cg.scs.carleton.ca/ luc/rnbookindex.html.

11.1. Finite activity. Assume we want to simulate the Lévy jump-diffusion

Lt = bt+ σWt +

Nt∑
k=1

Jk

where Nt ∼ Poisson(λt) and J ∼ F (dx). W denotes a standard Brownian
motion, i.e. Wt ∼ Normal(0, t).

We can simulate a discretized trajectory of the Lévy jump-diffusion L at
fixed time points t1, . . . , tn as follows:

• generate a standard normal variate and transform it into a normal
variate, denoted Gi, with variance σ∆ti, where ∆ti = ti − ti−1;
• generate a Poisson random variate N with parameter λT ;
• generate N random variates τk uniformly distributed in [0, T ]; these

variates correspond to the jump times;
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• simulate the law of jump size J , i.e. simulate random variates Jk
with law F (dx).

The discretized trajectory is

Lti = bti +

i∑
j=1

Gj +

N∑
k=1

1{τk<ti}Jk.

Alternatively, we can also generate a sequence of exponential variates which
are the interarrival times of the compound Poisson process together with
the variates from the jump distribution.

11.2. Infinite activity. The variance gamma and the normal inverse Gauss-
ian process can be easily simulated because they are time-changed Brownian
motions.

Assume we want to simulate a normal inverse Gaussian (NIG) process
with parameters α, β, δ, µ; cf. also section 10.5. We can simulate a discretized
trajectory at fixed time points t1, . . . , tn as follows:

• simulate n independent inverse Gaussian variables Ii with parame-
ters (δ∆ti)

2 and α2 − β2, where ∆ti = ti − ti−1, i = 1, . . . , n;
• simulate n i.i.d. standard normal variables Gi;
• set ∆Li = µ∆ti + βIi +

√
IiGi.

The discretized trajectory is

Lti =
i∑

k=1

∆Lk.

Assume we want to simulate a variance gamma (VG) process with pa-
rameters σ, θ, κ; we can simulate a discretized trajectory at fixed time points
t1, . . . , tn as follows:

• simulate n independent gamma variables Γi with parameter ∆ti
κ

• set Γi = κΓi;
• simulate n standard normal variables Gi;
• set ∆Li = θΓi + σ

√
ΓiGi.

The discretized trajectory is

Lti =
i∑

k=1

∆Lk.

If the Lévy process has jumps of infinite variation, then (under a mild
condition) we can approximate the jumps of absolute size smaller than ε by
a Brownian motion with variance

t

∫
|x|<ε

x2Π(dx).

12. Stochastic integration

In this section, we develop the theory of stochastic integration with respect
to general semimartingales and Poisson random measures in several steps.



54 ERIK BAURDOUX AND ANTONIS PAPAPANTOLEON

12.1. Semimartingales and Doob–Meyer decompositions. We start
with some useful definitions and results from stochastic analysis. Let B =
(Ω,F ,F, IP) denote a stochastic basis. We denote by M the space of martin-
gales and by H2 the space of square integrable martingales on B, starting
at zero, while V denotes the space of processes with finite variation. If C

denotes a class of processes, then Cloc denotes the localized class.

Definition 12.1. A càdlàg, adapted stochastic process X is called a semi-
martingale if it admits a decomposition

X = X0 +M +A, (12.1)

where X0 is F0-measurable and finite, M ∈Mloc and A ∈ V. A semimartin-
gale X is called special if A is also predictable.

Example 12.2. Every Lévy process is a semimartingale. This follows di-
rectly from the Lévy–Itô decomposition (6.2) of a Lévy process.

Remark 12.3. The decomposition (12.1) of a semimartingale X is not
unique. In order to construct a counterexample, consider a Poisson process
N with intensity λ. The compensated Poisson process N is a martingale,
see Exercise 2, with decomposition

N t = Nt − λt. (12.2)

This is clearly the decomposition of a semimartingale, however the RHS of
(12.2) is both a process of finite variation and a martingale.

On the contrary, the decomposition (12.1) of a special semimartingale is
unique, since the only predictable local martingale of finite variation is the
constant process; cf. [JS03, Cor. I.3.16]. If we consider the Poisson process
again—which is also a special semimartingale—, we see that the RHS of
(12.2) is not predictable, hence the decomposition is unique.

Definition 12.4. A process X = (Xt)t≥0 is of class (D) if the set of random
variables (Xτ )τ∈T is uniformly integrable, where T denotes the set of all
finite-valued stopping times on B.

Theorem 12.5 (Dood–Meyer decomposition). (1) Every submartingale
X = (Xt)t≥0 admits the unique decomposition (12.1) where M is a
local martingale with M0 = 0 a.s., and A is a predictable, increasing,
locally integrable process, with A0 = 0 a.s.

(2) Every submartingale X = (Xt)t≥0 of class (D) admits the unique
decomposition (12.1) where M is a uniformly integrable martingale
with M0 = 0 a.s., and A is a predictable, increasing, integrable pro-
cess, with A0 = 0 a.s.

Proof. [Pro04, Chapter 3]. �

Theorem 12.6 (Doob’s martingale inequality). Let X = (Xt)t≥0 be a non-
negative submartingale, then for any p > 1 and any t ≥ 0

IE[Xp
t ] ≤ IE

[
sup

0≤s≤t
Xp
s

]
≤ qpIE

[
Xp
t

]
, (12.3)
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where p and q are conjugate, i.e. 1
p + 1

q = 1. In particular, if X is a square-

integrable martingale then

IE
[

sup
0≤s≤t

Xp
s

]
≤ 4IE

[
X2
t

]
. (12.4)

Proof. [JP03] or [Wil91]. �

Theorem 12.7. Let M be a square integrable martingale with M0 = 0 a.s.
There exists a unique, increasing, predictable and integrable process 〈M〉
such that M2 − 〈M〉 is a uniformly integrable martingale.

Definition 12.8. The process 〈M〉 is called the predictable quadratic vari-
ation, or angle bracket, of M .

Proof. Let M ∈ H2 then, by Jensen’s inequality, we have that M2 is a non-
negative submartingale. Applying Doob’s inequality and using the square
integrability of M we get that sup0≤s≤tM

2
s is integrable (for any t). More-

over, Doob’s stopping theorem yields that the stopped process M2,τ =
(M2

t∧τ )t≥0 is a submartingale. Therefore, M2,τ is a process of class (D) and
the Dood–Meyer decomposition yields that there exists a unique, increasing,
predictable and integrable process, denoted by 〈M〉, such that

M2 − 〈M〉
is a uniformly integrable martingale. �

Remark 12.9. The processes M2 and 〈M〉 obviously satisfy

IE[M2
t ] = IE[〈M〉t]. (12.5)

Note that a “converse” to this theorem is also true.

Lemma 12.10. Let M be a square-integrable martingale, and assume there
exists an increasing, predictable and integrable process A such that

IE[(Mt −Ms)
2|Fs] = IE [At −As|Fs] . (12.6)

Then A is the predictable quadratic variation of M .

Proof. Using the martingale property of M , we can rearrange (12.6) as fol-
lows:

(12.6)⇐⇒ IE[M2
t −M2

s |Fs] = IE[At −As|Fs]
⇐⇒ IE[M2

t −At|Fs] = IE[M2
s −As|Fs] = M2

s −As,

hence M2 − A is a martingale. Now, the uniqueness of the Doob–Meyer
decomposition yields that A is the predictable quadratic variation of M , i.e.
A ≡ 〈M〉. �

Example 12.11. Let X = (Xt)t≥0 be a square integrable Lévy process.
The process M = (Mt)t≥0, where

Mt = Xt − IE[Xt]

=
√
cWt +

t∫
0

∫
R

x(µX − νX)(ds, dx), (12.7)
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is a martingale, see Proposition 9.12, and it follows directly it is also square-
integrable. We have that

IE[Mt] = 0 and Var[Mt] =
(
c+

∫
R

x2ν(dx)
)
t. (12.8)

Now, M2 is a submartingale of class (D) and has the Doob–Meyer decom-
position

M2 − 〈M〉 ∈ M.

Since M2 − 〈M〉 and M are zero-mean martingales we get

IE[M2
t − 〈M〉t] = 0 = IE[M2

t ]−Var[Mt], (12.9)

thus, using Lemma 12.10, we can conclude that

〈M〉t =
(
c+

∫
R

x2ν(dx)
)
t. (12.10)

12.2. Spaces of integrands. Here we define the class of simple, predictable
processes and the class of square-integrable processes (wrt 〈M〉). These are
the classes of integrands with respect to which we can reasonably define a
stochastic integral, when the integrator is a square integrable martingale.

Definition 12.12. Let M be a square integrable martingale with pre-
dictable quadratic variation 〈M〉, and fix T > 0. We denote by L2(M)
the space of square integrable processes with respect to 〈M〉, that is

L2(M) =
{
f : [0, T ]× Ω→ R

∣∣f predictable and IE
[ T∫

0

|fs|2d〈M〉s
]
<∞

}
.

Let f, g ∈ L2(M), then

〈f, g〉L2(M) = IE
[ T∫

0

fsgsd〈M〉s
]

(12.11)

defines an inner product on L2(M), while L2(M) endowed with this inner
product becomes a real Hilbert space. The norm on L2(M) is naturally
induced by

‖f‖L2(M) = 〈f, f〉L2(M). (12.12)

Definition 12.13. The stochastic set Kr, sK is defined as

Kr, sK := {(ω, t) : ω ∈ Ω, r < t ≤ s}. (12.13)

Definition 12.14. Let Π = {0 = s0 < · · · < sn = T} denote a partition of
[0, T ]. The space of simple predictable processes is defined as

S =
{
f : [0, T ]× Ω→ R

∣∣f(s) =

n∑
i=1

fi1Ksi,si+1K, fi is Fsi-adapted & bounded
}
.

Lemma 12.15. The space S is dense in L2(M).

Proof. This follows analogously to Theorem 8.8. in [Sch05]. �

Exercise 20. Prove Lemma 12.15.
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12.3. Stochastic integration wrt an L2-martingale, simple processes.
We are now ready to define the stochastic integral of a simple, predictable
process f with respect to a square integrable martingale M .

Definition 12.16. Let f ∈ S and M ∈ H2. The stochastic integral of f
with respect to M is defined by

It =

n−1∑
i=0

fi
(
Msi+1∧t −Msi∧t

)
. (12.14)

We will denote the stochastic integral by

It = It(f) =

t∫
0

fsdMs. (12.15)

The idea for the construction of the stochastic integral is due to Kiyoshi Itô,
hence it is also called the Itô stochastic integral.

Remark 12.17. Let us point out that for each time interval (si, si+1] the
integrand fi is adapted to Fsi , i.e. to the “past”, while the integrator Msi+1−
Msi “looks into the future”. In mathematical finance, fi has the natural
interpretation as a trading strategy for the time interval [si, si+1], which
should be based on information up to time si. Thus it should be Fsi-adapted.

Lemma 12.18. The stochastic integral is linear, i.e. if α, β ∈ R and f, g ∈
S, then

It(αf + βg) = αIt(f) + βIt(g). (12.16)

Proof. Immediate from (12.14). �

As a first result, we show that the stochastic integral of a simple pro-
cess with respect to a square integrable martingale is a square integrable
martingale itself, and prove an isometry between S and L2(Ω,F , IP).

Lemma 12.19. Let f ∈ S and M ∈ H2. Then, the stochastic integral I =∫ ·
0 fsdMs defined by (12.14) is a square integrable martingale, the predictable

quadratic variation of I is

〈I〉 =

·∫
0

fsd〈M〉s, (12.17)

and

IE[|It|2] = IE
[ t∫

0

|fs|2d〈M〉s
]
. (12.18)

Proof. Step 1. For the martingale property, we have to show that

IE[It|Fs] = Is. (12.19)

Let 0 ≤ s < t ≤ T and Π be a partition of [0, T ]. Assume that s and t
belong to different subintervals of Π, that is, there exist points sl and sk
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with sl+1 < sk such that s ∈ (sl, sl+1] and t ∈ (sk, sk+1]. Then, we can
decompose It as follows:

It =

l−1∑
i=0

fi
(
Msi+1 −Msi

)
+ fl

(
Msl+1

−Msl

)
+

k−1∑
i=l+1

fi
(
Msi+1 −Msi

)
+ fk

(
Mt −Msk

)
= I1 + I2 + I3 + I4. (12.20)

Every random variable in I1 is Fs-measurable since sl ≤ s, hence

IE[I1|Fs] = I1. (12.21)

Regarding I2, since fl and Msl are Fs-measurable and using the martingale
property of M , we get that

IE[fl
(
Msl+1

−Msl

)
|Fs] = flIE[Msl+1

|Fs]−Msl = fl
(
Ms −Msl

)
. (12.22)

Looking again at (12.21)–(12.22), we have that

IE[I1 + I2|Fs] = I1 + fl
(
Ms −Msl

)
= Is. (12.23)

Hence, for the martingale property to hold we have to show that

IE[I3 + I4|Fs] = 0.

Next, regarding I3 and I4, since sl+1 ≥ s we will use the following iterated
conditioning trick for the proof: for sm ≥ sl+1 ≥ s we have

IE[fm
(
Msm+1 −Msm

)
|Fs] = IE[IE[fm

(
Msm+1 −Msm

)
|Fsm ]|Fs]

= IE[fm
(

IE[Msm+1

)
|Fsm ]︸ ︷︷ ︸

=Msm

−Msm

)
|Fs] = 0.

Applying this to I3 and I4 yields that IE[I3+I4|Fs] = 0, hence the martingale
property of the stochastic integral I =

∫ ·
0 fsdMs has been proved.

Step 2. Let us now turn to the predictable quadratic variation of I. We
will denote the increment of M by ∆, i.e. ∆i := Msi+1 −Msi , therefore

It =
n−1∑
i=0

fi
(
Msi+1 −Msi

)
=

n−1∑
i=0

fi∆i, (12.24)

where ∆n−1 = Mt −Msn−1 , and then

I2
t =

n−1∑
i=0

f2
i ∆2

i + 2
∑

0≤i<j≤n−1

fifj∆i∆j . (12.25)
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Let us observe that, for s = s0 < · · · < sn = t, we have

IE[(It − Is)2|Fs] = IE
[( t∫

s

fudMu

)2∣∣Fs] = IE
[( n−1∑

i=0

fi∆i

)2∣∣Fs]

= IE
[ n−1∑
i=0

f2
i ∆2

i

∣∣Fs]+ 2IE
[ ∑

0≤i<j≤n−1

fifj∆i∆j

∣∣Fs]

=
n−1∑
i=0

IE
[
f2
i ∆2

i

∣∣Fs]+ 2
∑

0≤i<j≤n−1

IE
[
fifj∆i∆j

∣∣Fs]
= I5 + I6. (12.26)

Regarding I6, using the martingale property of M , we have that for i < j

IE
[
fifj∆i∆j

∣∣Fs] = IE
[
IE
[
fifj∆i∆j

∣∣Fsj]∣∣Fs]
= IE

[
fifj∆iIE

[
Msj+1 −Msj

∣∣Fsj]∣∣Fs]
= IE

[
fifj∆i

(
IE
[
Msj+1

∣∣Fsj]−Msj︸ ︷︷ ︸
=0

)∣∣Fs]
= 0, (12.27)

because fi, fj and ∆i are Fsj -measurable. A similar argument applies for
i > j, hence I6 = 0. Regarding I5, we have that

IE
[
f2
i ∆2

i

∣∣Fs] = IE
[
IE
[
f2
i ∆2

i

∣∣Fsi]∣∣Fs]
= IE

[
f2
i IE
[(
Msi+1 −Msi

)2∣∣Fsi]∣∣Fs]
= IE

[
f2
i IE
[
〈M〉si+1 − 〈M〉si

∣∣Fsi]∣∣Fs]
= IE

[
IE
[
f2
i

(
〈M〉si+1 − 〈M〉si

)∣∣Fsi]∣∣Fs]
= IE

[
f2
i

(
〈M〉si+1 − 〈M〉si

)∣∣Fs],
therefore, we get

I5 = IE
[ n−1∑
i=0

f2
i

(
〈M〉si+1 − 〈M〉si

)∣∣Fs]

= IE
[ t∫
s

f2
ud〈M〉u

∣∣Fs], (12.28)

hence, we can conclude that

IE
[(
It − Is

)2∣∣Fs] = IE
[ t∫
s

f2
ud〈M〉u

∣∣Fs]. (12.29)
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Setting s = 0 we arrive at

IE
[
I2
t

]
= IE

[ t∫
0

f2
ud〈M〉u

]
, (12.30)

which also shows the square-integrability of I, while Lemma 12.10 immedi-
ately yields that

〈I〉t =

t∫
0

f2
ud〈M〉u.

�
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Birkhäuser, 2006.
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[ST98] W. Schoutens and J. L. Teugels. Lévy processes, polynomials and martingales.

Comm. Statist. Stochastic Models, 14:335–349, 1998.
[Wil91] D. Williams. Probability with Martingales. Cambridge University Press, 1991.


	1. Introduction
	2. Definition of Lévy processes
	3. Toy example: a Lévy jump-diffusion
	4. Infinitely Divisible distributions
	5. The Lévy–Khintchine representation
	6. The Lévy–Itô decomposition
	7. The Lévy measure and path properties
	8. Elementary operations
	9. Moments and Martingales
	10. Popular examples
	11. Simulation of Lévy processes
	12. Stochastic integration
	References

